
Fixing the Java Memory Model

William Pugh
Dept. of Computer Science

Univ. of Maryland, College Park
pugh@cs.umd.edu

Abstract

The Java memory model described in Chapter 17 of the
Java Language Specification gives constraints on how
threads interact through memory. The Java memory
model is hard to interpret and poorly understood; it
imposes constraints that prohibit common compiler op-
timizations and are expensive to implement on existing
hardware. At least one shipping optimizing Java com-
piler violates the constraints of the existing Java mem-
ory model. These issues are particularly important for
high-performance Java applications, since they are more
likely to use and need aggressive optimizing compilers
and parallel processors.

In addition, programming idioms used by some pro-
grammers and used within Sun’s Java Development Kit
is not guaranteed to be valid according the existing Java
memory model.

This paper reviews these issues and suggests replace-
ment memory models for Java.

1 Introduction

The Java memory model, as described in chapter 17 of
the Java Language Specification [GJS96], is very hard
to understand. Research papers that analyze the Java
memory model interpret it differently [GS97, CKRW97,
CKRW98]. Guy Steele (one of the authors of [GJS96])
was unaware that the memory model prohibited com-
mon compiler optimizations, but after several days of
discussion at OOPSLA98 agrees that it does.

Given the difficulty of understanding the memory
model, there may be disagreements as to whether the
memory model actually has all of the features I believe

This work was supported National Science Foundation grants
ACI9720199 and CCR9619808.

Permission to make digital or hard copies of part or all of this work for personal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for components of this work

owned by others than ACM must be honored. Abstracting with credit is per-

mitted. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission and/or a fee.

c© 1999 ACM
To appear at the Java Grande Conference, June 12–14, 1999

it does. However, I don’t believe it would be profitable
to spend much time debating whether it does have these
features. I am convinced that the existing style of the
specification will never be clear, and that attempts to
patch the existing specification by adding new rules will
make even harder to understand. If we decide to change
the Java memory model, a completely new description
of the memory model should be devised.

In addition to the problem that the memory model
is very hard to understand, it has two basic problems:
it is too weak and it is too strong. It is too strong
in that it prohibits many compiler optimizations and
requires many memory barriers on architectures such
Sun’s Relaxed Memory Order (RMO). It is too weak in
that much of the code that has been written for Java,
including code in Sun’s JDK, is not guaranteed to be
valid.

2 The Java Memory Model

In this section, I try to interpret JMM, the existing Java
Memory Model, as defined in Chapter 17 of the Java
Language Specification [GJS96]. The same definition
also appears in Chapter 8 of the Java Virtual Machine
Specification [LY96].

A number of terms are used in the Java memory
model but not related to Java source programs nor the
Java virtual machine. Some of these terms have been
interpreted differently by various people. I have based
my understanding of these terms on conversations with
Guy Steele, Doug Lea and others.

A variable refers to a static variable of a loaded class,
a field of an allocated object, or element of an allocated
array. The system must maintain the following proper-
ties with regards to variables and the memory manager:

• It must be impossible for any thread to see a vari-
able before it has been initialized to the default
value for the type of the variable.

• The fact that a garbage collection may relocate a
variable to a new memory location is immaterial

1

http://www.cs.ucsb.edu/conferences/java99

Initially: x = y = 0
Thread 1 Thread 2

a = x b = y
y = 1 x = 1

Anomalous result: a = 1, b = 1

Figure 1: Execution valid for Java only due to prescient
stores

and invisible to the memory model.

The existing Java memory model discusses use, as-
sign, lock and unlock actions:

• A use action corresponds to a getfield,
getstatic or array load (e.g., aaload) Java byte-
code instruction.

• An assign action corresponds to a putfield,
putstatic or array store (e.g, aastore) Java byte-
code instruction.

• A lock action corresponds to a monitorenter Java
bytecode instruction.

• A unlock action corresponds to a monitorexit
Java bytecode instruction.

2.1 Bug fixes

The JMM suggests that at thread termination, a thread
doesn’t need to write back the results of assigns to main
memory. This is obviously (to me) a bug and I assume it
is fixed by saying that there must be a store associated
with the last assign to a variable in a thread.

The JMM also doesn’t force a thread to pushed
cached writes out to main memory before starting a
new thread. This has been acknowledged as a bug.

2.2 Interpretation

Due to the double indirection in the Java memory
model, it is very hard to understand. What features
does it provide?

Consider the example in Figure 1. Gontmakher and
Schuster [GS97] state that this is an execution trace
that is illegal for Java, but they are incorrect because
they do not consider prescient stores [GJS96, §17.8].
Without prescient stores, the actions and ordering con-
straints required by the JMM are shown in Figure 2.
Since the write of y is required to come after the read
of x, and the write of x is required to come after the
read of y, it is impossible for both the write of x to
come before the read of x and for the write of y to come
before the read of y.

With prescient stores, the store actions are not re-
quired to come after the assign actions; in fact, the store

load x

use x

assign y

store y

read x

write y

load y

use y

assign x

store x

read y

write x

Figure 2: Actions and orderings for Figure 1 without
prescient stores (with prescient stores, delete orderings
from assign actions to store actions)

// p and q might be aliased
int i = p.x
// concurrent write to p.x
// by another thread
int j = q.x
int k = p.x

Figure 3: Example showing that reads kill

2

actions can be the very first actions in each thread. This
makes it legal for the write actions for both x and y to
come before either of the read actions, and for execution
to result in a = b = 1.

What the JMM does require is Coherence [ABJ+93].
Informally, for each variable in isolation, the uses and
assigns to that variable must appear as if they acted di-
rectly on global memory in some order that respects the
order within each thread (i.e., each variable in isolation
is sequentially consistent). A proof that the Java mem-
ory model requires Coherence is given in [GS97]. That
paper didn’t consider prescient stores, but it doesn’t im-
pact the proof that the JMM requires Coherence; even
with prescient stores, the load and store actions for a
particular variable cannot be reordered.

In discussions, Guy Steele stated that he had in-
tended the JMM model to have this property, because
he felt it was too non-intuitive for it not to. However,
Guy was unaware of the implications of Coherence on
compiler optimizations (below).

2.3 Coherence means that reads kill

Consider the code fragment in Figure 3 Since p and
q only might be aliased, but are not definitely aliased,
then the use of q.x cannot be optimized away (if it were
known that p and q pointed to the same object, then
it would be legal to replace the assignments to j and k
with assignments of the value of i). Consider the case
where p and q are in fact aliased, and another thread
writes to the memory location for p/q.x between the
first use of p.x and the use of q.x; the use of q.x will
see the new value. It will be illegal for the second use of
p.x (stored into k) to get the same value as was stored
into i. However, a fairly standard compiler optimiza-
tion would involve eliminating the getfield for k and
replacing it with a reuse of the value stored into i. Un-
fortunately, that optimization is illegal in any language
that requires Coherence.

One way to think of it is that since a read of a mem-
ory location may cause the thread to become aware of
a write by another thread, it must be treated in the
compiler as a possible write.

In talking with a number of people at OOPSLA98,
I found that most people were not aware of the impli-
cations for compilers of Coherence in the JMM, and at
least one shipping commercial Java compiler violates
Coherence.

2.4 JMM is stronger than Coherence

Initially, I tried to derive a proof that, excluding locks
and volatile variables, the Java memory model is exactly
Coherence. Instead, I came up with a counter-example.
Consider the code fragment in Figure 4, and the sce-
nario in which p and q are aliased (although we are not

// p and q might be aliased
int i = r.y
int j = p.x
// concurrent write
// to p.x by another thread
int k = q.x
p.x = 42

Figure 4: Counter example to JMM ≡ Coherence

use r.y

use p.x

use p/q.x

assign p.x

load r.y

load p.x

load p/q.x

store p.x

read r.y

read p.x

read p/q.x

write p.x

write p.xa

a

a

b

e

b

e

c

e

g

g

h

h

f

c

d

f

Figure 5: JMM actions for Figure 4

able to prove it), and another write happens to update
the value of p/q.x between the read of p.x and the read
of q.x, so that the use of p/q.x sees a different value
than the use of p.x. The actions corresponding this
execution, and their ordering constraints, are shown in
Figure 5.

The boxes and arrows in this diagram arise for the
following reasons:

a [GJS96, §17.3, bullet 1]: All use and assign actions
by a given thread must occur in the order specified
by the program being executed.

b [GJS96, §17.3, bullet 4]: ... must perform a load
before performing a use

c Since the use of p/q.x sees a different value than the
use of p.x, there must be a separate load instruc-
tion for the use of p/q.x, which must precede the
use of p/q.x and follow the use of p.x.

d [GJS96, §17.8, bullet 3]: No load of V intervenes be-
tween the relocated [prescient] store and the as-
sign.

e [GJS96, §17.3, second list of bullets, 1st bullet]: For
each load, there must be a corresponding preced-
ing read

3

use p/q.x

assign p.x

load p/q.x

store p.x

read p/q.x

write p.x

write p.xa

a

a

use r.y

load r.y

read r.y

b

e
use p.x

load p.x

read p.x

b

e

c

e

g

h

h

c

d

f

g
f

Figure 6: JMM actions for Figure 4 after re-ordering
use of r.y and use of p.x

f [GJS96, §17.3, second list of bullets, 2nd bullet]: For
each store, there must be a corresponding follow-
ing write

g [GJS96, §17.2, 2nd bullet]: actions performed by
main memory for any one variable are totally or-
dered

[GJS96, §17.3, second list of bullets, 3rd bullet]:
edges between load/store actions on a variable V
and the corresponding read/write actions cannot
cross

h Since we consider the situation where p and q are
aliased and the use of p/q.x sees a different value
than the use of p.x, there must have been an in-
tervening write to p.x by another thread between
the load of p.x and the load of p/q.x.

I showed this example to Guy Steele and he ten-
tatively agreed that the JMM imposed the constraints
shown in Figure 5, although he did not double check it
at length.

This ordering constraints was definitely not in-
tended, and has a substantial impact on optimizing Java
compilers and on Java programs running on aggressive
processor architectures.

2.4.1 Reorderings are not closed under composition

In Figure 5 it would be legal for the read r.y action
to occur after the read p.x action. But if we tried to
perform this transformation at the bytecode level (mov-
ing the getfield r.y instruction to after the getfield
p.x action), we get the actions shown in Figure 6. In
these set of actions, it would be legal to perform the
read r.y action after the write p.x action. So the set
of legal transformations on Java programs are not closed
under composition. You can’t perform a transformation

at the bytecode level without reasoning about whether
or not there might exist any downstream component
that might perform a reordering that, when composed
with your reordering, produces an illegal reordering of
the memory references.

This pretty much prohibits any bytecode transfor-
mations of memory references.

There may be other strange constraints imposed by
the existing JMM, but at this point we switch from
trying to decipher the existing JMM to deciding what
features we want in a new Java memory model.

3 Reality

We would like the Java memory model to interfere as
little as possible with compiler optimizations and to not
require memory barrier instructions on hardware with
loose memory models, such as the Sparc V9 Relaxed
Memory Order (RMO) [WG94].

Here are some of the issues that drive us to weaken
the memory model. All of these are in the absence of
explicit synchronization:

1. We want to give the compiler/optimizer freedom
to reorder instructions that could be reordered in
a single threaded environment.

2. We want to allow the compiler/optimizer to do
forward substitution / scalar replacement (e.g., re-
place a getfield instruction with a reuse of the value
last stored into that variable).

3. We want to allow the processor to reorder instruc-
tions during execution.

4. We want to allow the processor to use a write-
buffer.

As it turns out, issue 1 is largely equivalent to issue 3,
and issue 2 is largely equivalent to issue 4.

3.1 Instruction Reordering

In memory models such as the Sparc-V9 Relaxed Mem-
ory Order (RMO) [WG94, Chap. 8], the processor ex-
ecute instructions out of order, so long as it does so in
a way that would not be detectable in absence of any
shared memory interaction with other processors. In
doing so, the processor is allowed to rename registers
(allowing it to ignore output and anti dependences on
registers) and perform control-speculation on loads so
as to reduce the ordering constraints. However, it does
have to respect output and anti dependences for mem-
ory locations.

4

Initially: a[0] = a[1] = 2
Processor 1 Processor 2

a[0] = 1 a[1] = 0
w = a[0] y = a[1]
x = a[w] z = a[y]

Anomalous result: x = z = 2

Figure 7: Execution only possible due to write buffer

3.2 Write Buffers

The memory models for most processors ignore the
cache: instructions can be reordered, but when the in-
structions execute, they update main memory immedi-
ately (this is, of course, only a model). Directly fol-
lowing this model would be expensive, so most memory
models are relaxed further by allowing a write buffer.
When a write is initiated, it goes into the write buffer.
The write is not considered to actually occur until it
reaches main memory. If a read occurs for a memory
location in the write buffer, the read gets the value in
the memory buffer. In essence, this allows the processor
to ignore flow dependences on memory locations when
reordering instructions, and yet still get the right an-
swer. Figure 7 shows a program execution legal only
due to the existence of a write buffer in the memory
model (without a write buffer, flow dependences would
order the statements in each thread).

3.3 Coherence is difficult

As noted above, the existing Java memory model en-
forces Coherence. Unfortunately, Coherence cannot be
enforced on architectures such as Sparc RMO without
memory barriers. The Sparc RMO doesn’t not guar-
antee that reads of the same memory location will be
executed in their original order. To enforce this, a
load/load memory barrier is required between any two
successive loads of the same memory location. It is un-
clear if any existing implementations of the Sparc RMO
would actually violate Coherence.

As mentioned earlier (Section 2.3), Coherence also
interferes with a number of compiler optimizations.

3.4 Flushing memory is expensive

The semantics of the lock and unlock actions in the
JMM are that they cause a thread to flush all dirty
variables from the thread’s working memory (registers,
cache, ...) to main memory, and a lock action also
causes a thread empty all variables from the thread’s
working memory, so that they have to be reloaded from
main memory before they can be used.

Some have suggested that, particularly in a multi-
processor server, this will be expensive. An alterna-

tive would be to say that only memory accessed inside
the synchronized block is flushed/emptied. This would
probably be a good idea if you were designing a memory
model from scratch, although more analysis is needed.
However, people writing to the current memory model
might expect that

synchronized(unsharedObject) {}
would have the effect of a memory barrier. Careful
thought is required about the amount of existing code
that would break if this change were made.

4 A New Proposal

In this section, I propose a new Java memory model.
This model is closely coupled to the Java virtual ma-
chine. The rules for Java source programs can be de-
rived by a simple and naive translation from Java source
to Java bytecode, and then using the rules of this model.
A Java thread executes read, write, lock, unlock and
think actions:

• A read action corresponds to a getfield, getstatic
or arrayload Java bytecode instruction.

• An write action corresponds to a putfield, put-
static or arraystore Java bytecode instruction.

• A lock action corresponds to a monitorenter Java
bytecode instruction.

• A unlock action corresponds to a monitorexit Java
bytecode instruction.

• A think action corresponds to all other Java byte-
code instructions.

A memory action is either a read or write action.
Within a thread, there is a direct dependence order-

ing between two actions A and B if A occurs before B
in the original program, and:

1. there is a flow dependence from A to B (i.e., the
value computed/read/written by A effects the ac-
tion performed by B). Issues such as stack depth
and stack manipulation instructions (e.g., swap)
are ignored in determining flow dependences.

2. A and B are lock and memory actions (either or-
der).

3. A is a write action and B is an unlock action
(either order).

4. A and B are both memory actions on the same
variable and at least one of them is a write action.

5. A and B are both memory action on volatile vari-
ables.

5

The required dependence ordering of actions is the tran-
sitive closure of direct dependence ordering. Actions
within a thread can be ordered in any way that respects
these orders. These constraints make it impossible to
determine that a threads actions have been reordered,
except through interaction with another thread or other
external agent (e.g., a debugger).

Control Speculation Note that there is no require-
ment that the ordering of actions respect control de-
pendences (there is a control dependence when one in-
struction influences whether another instruction will be
performed). The Sparc RMO memory model allows re-
ordering of loads that doesn’t respect control depen-
dences (e.g., speculative loads), but doesn’t allow spec-
ulative stores (since you can’t undo them). Defining
control dependence in Java is a little tricky, since many
instructions (and all memory actions) can throw an ex-
ception that prevent following instructions from occur-
ring). If we included such exceptions in computing con-
trol dependence, then we wouldn’t be able to perform
any reordering of writes at all.

Instead, we allow actions to be reordered as though
the system had exact knowledge of the path of program
execution. Loads may be done speculatively, and stores
may be done in a manner that appears to be specula-
tive. However, a store may not be performed unless it
is guaranteed that the thread will execute the store (ex-
cluding situations such as a VirtualMachineError or
ThreadDeath error). This is intended to allow the com-
piler to use any form of static or runtime analysis to
predict which paths will be taken and which exceptions
cannot be thrown.

Scalar Replacement If a memory action A and a read
action B reference the same non-volatile variable and A
and B are reordered so that B immediately follows A,
then B can be replaced with a think action that com-
putes the same value as was read/written by A. This
rule subsumes both scalar replacement by the compiler
and write buffers within a processor. For example, this
rule, combined with the reordering rules above, allow
for the behavior seen in Figure 7. Without this scalar
replacement rule, such behavior would be illegal.

Dead Store Elimination If two write actions A and B
reference the same non-volatile variable and A and B
are reordered so that A immediately precedes B, then
A can be deleted.

4.1 Comparison with the Old JMM

My proposed Java memory model is neither stronger
nor weaker than the existing Java memory model. My

Initially: a[0] = 3, a[1] = a[2] = 0
Processor 1 Processor 2

Thread 1 Thread 2 Thread 3 Thread 4
a[1] = 2 w = a[1] a[2] = 1 y = a[2]

x = a[w] z = a[y]
Anomalous result: w = 2, x = 0, y = 1, z = 0

Figure 8: Interference by other threads on same proces-
sor

model requires that memory operations not be re-
ordered in a way that violations the data dependences
of the program, while the old model does not. However,
it is hard to imagine how one could take advantage of
the additional freedom offered by the old model.

On the other hand, my model does not require Co-
herence nor does it impose anomalous constraints such
as shown in Figures 4 – 5.

4.2 Enforcing Coherence

The above proposal is designed so that in the absence
of synchronization, it has no impact on compiler opti-
mizations and can be executed on architectures such as
the Sparc V9 RMO without memory barriers. However,
it does not enforce Coherence, while the original JMM
did. The only effect this has is on successive reads of
the same variable.

The benifits of enforcing Coherence is unclear. But
if is it desired, Coherence can be enforced by changing
rule 4 so that there is a direct dependence even if both
A and B are read actions.

4.3 Threads, not Processors

One issue that needs to be addressed is that processor
memory models are in terms of processors, while the
Java memory model is in terms of threads and has no
concept of processors. Consider the example in Figure
8. Threads 2 and 4 should only be able to see the writes
to a[1] and a[2] through main memory. Which write
happened first in main memory? If y = 0, then we must
have w = 2 and the write of a[1] occurring before the
write of a[2]. If z = 0, then we must have x = 2 and
the write of a[2] occurring before the write of a[1].
This suggests that the result in Figure 8 can’t happen.

However, unless we are careful, it can. Consider the
case where, on processor 1, the write to a[1] is initi-
ated first, followed by the instructions for thread 2. On
processor 2, the write to a[2] is executed before the in-
structions for thread 4. All of the instructions in thread
2 and 4 finish execution before the writes from threads
1 and 3 exit the write buffers on processors 1 and 2. In
this case, w and x will get their values from the write
buffer, and y and z could get their values from the cache

6

Initially: p = new Point(1,2)
Thread 1 Thread 2

p = new Point(3,4); a = p.x
a = 0 (!?), 1 or 3

Figure 9: Reordering of field initialization and ref up-
date

Initially: this.p = new Point(1,2)
Thread 1 Thread 2
synchronized (this) {

this.p = new Point(3,4);} a = this.p.x;
a = 0 (!?), 1 or 3

Figure 10: Synchronized reordering of field initialization
and ref update

(which is coherent because the writes haven’t exited the
write buffer).

One way to fix this is to require a memory barrier
when switching threads on a processor. On a multi-
processor that implemented the Sparc RMO memory
model, you would need a Membar #Lookaside instruc-
tion as part of a context switch. The context switch is
probably expensive enough that you won’t notice the
cost of the Membar instruction.

On an architecture such as the Tera, which has
very fast context-switching (between instructions), this
could prove to be more of a problem. It might be pos-
sible to weaken the memory model to allow for the exe-
cution shown in Figure 8, but I’ll leave that for another
time.

5 The JMM is too weak

Joshua Bloch of Javasoft was one of the first to recognize
that many of the idioms used in writing Java programs
were not guaranteed to be safe according to the JMM.
Consider the example in Figure 9. The JMM given in
[GJS96, Chap 17] doesn’t require that the writes initial-
izing the point allocated by thread 1 be sent to main
memory before the write of the reference to the newly
created point into p, nor does it require that the read
of p.x be done after the read of p.

This is rather unpleasant. For one things, final fields
aren’t final. Even if a field is declared as a final, this
loophole could allow another thread accessing the object
might see the default value for the field. In all kinds of
code, you would need to worry about whether the object
a method is invoked on is properly initialized.

Note that synchronization isn’t a magic fix to this
problem. If we add synchronization to the update, but
not to the read (as in Figure 10), we still have the ex-
act same problem; both all writes need to be sent to

Initially: this.p = new Point(1,2)
Thread 1 Thread 2
synchronized (this) {

synchronized (this) {
tmp = new Point(3,4);} a = this.p.x;

this.p = tmp; }
a = 0 (!?), 1 or 3

Figure 11: More synchronization doesn’t help

public MyFrame extends Frame {
private MessageBox mb;
private showMessage(String msg) {
if (mb == null) {

synchronized(this) {
if (mb == null)
mb = new MessageBox();

}
mb.setMessage(msg);
mb.pack(); mb.show();
}

// .. more methods and variables ...
}

Figure 12: Double-check and lazy instantiation idioms

main memory before the unlock action, but they can
be sent in any order. You might think that putting a
monitorexit between the creation of the Point and the
storing of the Point into this.p might fix the problem;
this is equivalent to making the constructor synchro-
nized (see Figure 11). Unfortunately, this doesn’t fix
the problem either, because in the existing JMM, the
write to this.p can be moved above the monitorexit
instruction. The only way to fix this in the existing
JMM is to require that the reader be synchronized.

Now of course, you can always say “Don’t write code
with race conditions!” But if you were writing a li-
brary that was sensitive from a security viewpoint, you
would have to worry about other programmers using
race conditions to attack your code. To fix this, we
probably need to make all of the getFoo() methods
synchronized (a getFoo() method is one that provides
controlled access to a field/attribute Foo of an object).
In the java.*, java.*.* and java.*.*.* packages of
Sun’s 1.2 distribution, there are a total of 829 getFoo()
methods that return object references, of which only 26
are synchronized. Also, encouraging programmers to be
very aggressive about using synchronization could also
introduce more problems with deadlock.

Another example of a programming idiom that is un-
safe according to the current JMM is the double-check
and lazy instantiation idioms, described in a recent ar-
ticle [BW99b] and book [BW99a, Chap. 9]. Figure

7

12 shows this idiom. This idiom is unsafe because the
writes that initialize the MessageBox don’t need to be
sent to main memory before the storing of the reference
to the MessageBox into mb.

I am convinced that we must fix this problem by
making it possible to enforce an order on the writes.
Trying to solve this problem solely by requiring syn-
chronization whenever accessing shared data just isn’t
going to work.

I don’t believe that there are any current Java im-
plementations that could exhibit the behavior shown
in Figures 9 – 11. As a result, few developers would
bother avoiding idioms like that, feeling confident that
they won’t get bit. However, with advanced optimiz-
ing compilers and aggressive architectures, we might
see this behavior down the road, at which point a huge
codebase of unsafe code will exist.

Before trying to fix the problem, we should explore
it in more detail. The basic problem in Figure 9 is
that there are two writes to global memory that can be
reordered, either by compiler optimizations or by the
processor. There is no dependence forcing one write
to come after the other, so the ordering is feasible and
plausible unless we forbid it. If these writes are re-
ordered, it could be detected by other threads, possibly
with severe consequences. The reads might also be re-
ordered, but this is more difficult because the memory
location read by the second read is dependent on the
value read by the first read.

In addition to arising in constructors, as shown in
Figures 9 – 11, it also arises in the situations shown
in Figures 13 – 15. If we are going to prohibit the
anomalous behavior in Figures 9 – 11, we should also
examine the behavior in Figures 13 – 15 and decide if
they need to be prohibited.

I am not going to give a definitive answer. Instead, I
will suggest several solutions, and discuss which behav-
iors they prohibit and their potential impact on com-
piler optimizations. My suggestions are roughly or-
dered from least protection/least cost to highest protec-
tion/highest cost, except making unlock a bidirectional
write-barrier, which I consider a necessary prerequisite.

Unlock must be a bidirectional write-barrier The
first fix that must be made to allow an ordering con-
straint to be imposed on writes. The existing JMM
[GJS96, §17.6] prohibits moving a store/write to after
an unlock action, but it doesn’t prohibit a store/write
from being moved to before an unlock action. The ex-
isting JMM can be patched by making an unlock action
act as a bi-directional store/write barrier. In my pro-
posed new Java memory model, I have already make
this change (item 3 of Section 4).

Once this change is made, Figure 11 can no longer
exhibit anomalous behavior. You might try to fix the

p = new Point(1,1), q = new Point(2,2)
Thread 1 Thread 2
q.x = 3
p = q a = p.x

a = 1, 2 (!?) or 3

Figure 13: Reordering of field update and ref update

int a[] = {1,2}, b[] = {3,4}
Thread 1 Thread 2
a[0] = 17

b = a i = b[0]
i = 1, 17 or 3 (?)

Figure 14: Reordering of element update and ref update

problems in Figures 9 – 10 by declaring the constructors
as synchronized. Unfortunately, that isn’t legal in Java.
Without additional changes, the only solution would be
to put synchronized blocks inside in each constructor.
This would work, but it would be a substantial pain.

5.1 Don’t do that

The easiest solution is to say “Don’t write programs
with race conditions”, and to not prohibit any of the
anomalous behavior. Although I think that people need
to be much more leery of race conditions than many
are, I don’t recommend this approach. Among other
problems, a package developer would have to worry too
much about whether users were avoiding data races.
A developer could put synchronized blocks inside con-
structors to prohibit the behavior of Figures 9 – 10 on a
case-by-case basis, but I suspect few developers would.

5.2 Allowing constructors to be synchronized

By allowing programmers to specify that a constructor
is synchronized, a developer could, on a case-by-case ba-
sis, prohibit the behavior in Figures 9 –10 . This would
be easier than putting synchronized blocks in construc-
tor methods, but still I suspect few developers would
bother doing so.

5.3 Ordering writes across a constructor completion

We could add the following rule to the set given in Sec-
tion 4

a if A and B are both write actions, A writes to a field
of an object X, B writes X into some variable, A
occurs during some constructor C invoked to cre-
ate X, and B occurs after C finishes, then there
is a direct dependence ordering between A and B
and they cannot be reordered.

8

Note that since there isn’t (and shouldn’t be) any action
corresponding to a completion of a constructor, keep-
ing track of this requirement requires more than just
looking at the actions. In particular, if a constructor
has been inlined, then forcing the appropriate ordering
constraints might require forcing some sort of memory
barrier (as in Section 5.4).

This will complete prohibit the behavior Figure 9. It
won’t completely prohibit seeing pre-initialized values
for final fields. If a constructor passes this to another
method before all of the final fields are initialized, the
other method can see them (but this is an evil program-
ming style). This doesn’t prohibit any of the behavior
in Figures 13 – 15.

5.4 Forcing a write barrier after a constructor call

We could say that the completion of a constructor call
acts as a special barrier action, and add the rule:

b if A and B are a write action and a barrier action
(either order), then there is a direct dependence
ordering between A and B and they cannot be re-
ordered.

The virtual machine could enforce a rule that the
completion of a constructor acted as a write barrier, in
the same way as a unlock action. This could apply to
all constructors, or the spec might only require a write
barrier at the completion of the outermost constructor
(although putting one at the completion of every con-
structor would be allowed).

This is similar to allowing constructors to be syn-
chronized. But since it doesn’t actually lock the object,
it couldn’t possibly cause deadlock and would likely
have minimal effects on performance. Thus, we don’t
have to worry about which constructors to synchronize;
we just force a write barrier after every object is con-
structed. It also doesn’t force a thread to empty the
thread’s working memory, so it may be less expensive
than synchronization.

This approach is a little simpler to explain than rule
a above, since it is simply explained in terms of actions.
However, in code that created lots of light weight ob-
jects (particularly if the Java language is changed to
provide better support for light weight objects than
can be unboxed), the large number of memory barri-
ers generated could significantly reduce the transforma-
tions that could be applied to the program.

5.5 Ordering writes

If we want to prohibit the anomalous behavior in Fig-
ures 13 – 14, we can do it by imposing constraints on
the reordering of writes (the reordering of the reads in
these examples is prohibited by the data dependence
between the two reads).

We have a couple of options as to how strong we
want this constraint to be. The basic, strong form of it
is:

c if A and B are both write actions, A writes to a field or
element of an object X, B writes X into some vari-
able, then there is a direct dependence ordering
between A and B and they cannot be reordered.

This would prohibit the anomalous behavior in Fig-
ures 9 – 14. We can relax this with any combination of
the following two options:

1. Enforce c only if the A writes is to a field, not an
element.

2. Enforce c only if the B writes X to a volatile vari-
able.

One of the problems with enforcing this ordering is
that we have to enforce it whenever a write might be to
a field/element of an object being stored by the later
write. Others I discussed this with expressed the opin-
ion that this constraint should only be enforced if the
writes involve the same variable, so that you know they
reference the same object. In other words, if I write to
p.x, then I write p into some variable, then I can’t re-
order the writes. However, if I write to p.x, and then I
write q into some variable, than I can reorder them even
though p and q might reference the same object. The
problem with basing this constraint on variable names
is that while variable names are fairly obvious in Java
source code, they are not present in the Java virtual ma-
chine. When writing p, the value being stored comes off
of the stack and might have gotten there through any
number of stack manipulation instructions. Defining
this constraint so that it only enforced the constraint
when the same “variable” is involved would be very dif-
ficult to define and implement at the JVM level.

A decision to enforce one of these constraints should
not be made without an understanding of the perfor-
mance impact. Particularly due to the problem with
aliases, the impact could be substantial (e.g., you would
pretty much have to insert a write barrier before any
store of an java.lang.Object, because it might refer-
ence any object that you have previously updated.

If we enforce this constraint only when the second
write is to a volatile field, I suspect the performance im-
pact will not be substantial. It makes a certain amount
of sense, because if you are playing with data races,
making your variables volatile is appropriate.

5.6 Prohibit all write reorderings

If you want to prohibit the anomalous behavior in Fig-
ure 15, I think you would really have to prohibit all
write reorderings. But I don’t think this should be se-
riously considered. This example is just a straw man

9

a = {1,2}, i = 1
Thread 1 Thread 2
a[2] = 17

i = 2 j = a[i]
j = 1, 2(?!) or 17

Figure 15: Reordering of element update and index up-
date

to suggest that we are going to have to accept some
anomalous behavior due to write reordering.

6 Conclusion

In this paper, I have described some of the problems
with the existing Java memory model: it has unfore-
seen impacts on compiler optimizations, requires mem-
ory barriers on architectures such as the Sparc RMO
even in the absence of synchronization, renders unsafe
programming idioms commonly used, and is very hard
to understand.

Intentionally writing code with data races is some-
thing best reserved for low-level native implementa-
tions of synchronization primitives. Most programmers
should just not count on any specific behavior in code
containing data races. However, the expectation that all
objects are properly initialized (assuming the construc-
tors are written properly), seems a worthwhile property
to guarantee.

The existing Java memory model impacts both com-
piler optimization and insertion of memory barriers.
Unfortunately, I have no empirical data on the per-
formance impact of these issues. Part of the problem
is that the impact may be minimal now, but grow as
compilers and processor architectures become more ag-
gressive.

More debate is needed on the Java memory model,
and I have no illusions that this paper will settle the
issue. But I hope it will be an important step in dis-
cussions leading to a solution.

Acknowledgments

Thanks to whole chorus of people who I discussed this
topic with, including Guy Steele, Doug Lea, David
Holmes, Josh Bloch and Sarita Adve.

References

[ABJ+93] M. Ahamad, R. A. Bazzi, R. John, P. Kohli,
and G. Neiger. The power of processor con-
sistency. In Proceedings of the Fifth ACM
Symp. on Parallel Algorithms and Architec-
tures (SPAA), 1993.

[BW99a] Philip Bishop and Nigel Warren. Java in
Practice: Design Styles and Idioms for Ef-
fective Java. Addison-Wesley, 1999.

[BW99b] Philip Bishop and Nigel Warren. Lazy
instantiation: Balancing performance
and resource usage. JavaWorld, 1999.
http://www.javaworld.com/javaworld/
javatips/jw-javatip67.html.

[CKRW97] Pietro Cenciarelli, Alexander Knapp, Bern-
hard Reus, and Martin Wirsing. From se-
quential to multi-threaded java: An event-
based operational semantics. In In Proc.
6th Int. Conf. Algebraic Methodology and
Software Technology, Berlin, October 1997.
Springer-Verlag.

[CKRW98] Pietro Cenciarelli, Alexander Knapp, Bern-
hard Reus, and Martin Wirsing. Formal
Syntax and Semantics of Java. Springer-
Verlag, 1998.

[GJS96] James Gosling, Bill Joy, and Guy Steele.
The Java Language Specification. Addison
Wesley, 1996.

[GS97] Alex Gontmakher and Assaf Schuster. Java
consistency: Non-operational characteriza-
tions for the java memory behavior. Techni-
cal Report CS0922, Dept. of Computer Sci-
ence, Technion, November 1997.

[LY96] Tim Lindholm and Frank Yellin. The Java
Virtual Machine Specification. Addison
Wesley, 1996.

[WG94] David Weaver and Tom Germond. The
SPARC Architecture Manual, version 9.
Prentive-Hall, 1994.

10

http://www.javaworld.com/javaworld/javatips/jw-javatip67.html
http://www.javaworld.com/javaworld/javatips/jw-javatip67.html

	Introduction
	The Java Memory Model
	Bug fixes
	Interpretation
	Coherence means that reads kill
	JMM is stronger than Coherence
	Reorderings are not closed under composition

	Reality
	Instruction Reordering
	Write Buffers
	Coherence is difficult
	Flushing memory is expensive

	A New Proposal
	Comparison with the Old JMM
	Enforcing Coherence
	Threads, not Processors

	The JMM is too weak
	Don't do that
	Allowing constructors to be synchronized
	Ordering writes across a constructor completion
	Forcing a write barrier after a constructor call
	Ordering writes
	Prohibit all write reorderings

	Conclusion

