
VMIPS instructions

addvv.d Vd, Vs, Vt Add elements of Vs and Vt, result in Vd

addvs.d Vd, Vs, Ft Add elements of Vs to Ft, result in Vd

subvv.d Vd, Vs, Vt Subtract elements of Vt from Vs, result in Vd

subvs.d Vd, Vs, Ft Subtract Ft from elements of Vs, result in Vd

subsv.d Vd, Fs, Vt Subtract elements of Vt from Fs, result in Vd

mulvv.d Vd, Vs, Vt Multiply elements of Vs and Vt, result in Vd

mulvs.d Vd, Vs, Ft Multiply elements of Vs by Ft, result in Vd

divvv.d Vd, Vs, Vt Divide elements of Vs and Vt, result in Vd

divvs.d Vd, Vs, Ft Divide elements of Vs by Ft, result in Vd

divsv.d Vd, Fs, Vt Divide Fs by elements of Vt, result in Vd

lv Vd, (Rs) Load into Vd from memory starting at address Rs
sv Vd, (Rs) Store Vd into memory starting at address Rs
lvws Vd, (Rs, Rt) Load into Vd starting from Rs with stride Rt (i.e., addresses Rs, Rs+ Rt, Rs+ 2 · Rt, . . . )
svws Vd, (Rs, Rt) Store Vd starting from Rs with stride Rt (i.e., addresses Rs, Rs+ Rt, Rs+ 2 · Rt, . . . )
lvi Vd, (Rs + Vt) Load into Vd at addresses Rs+ Vti

svi Vd, (Rs + Vt) Store Vd at addresses Rs+ Vti

cvi Vd, Rs Set Vd to hold the indices 0, Rs, 2 · Rs, . . .
sXXvv.d Vs, Vt Compare elements of Vs with Vt using XX = EQ/NE/LT/LE/GT/GE; 0/1 results into VM

sXXvs.d Vs, Ft Compare elements of Vs with Ft using XX = EQ/NE/LT/LE/GT/GE; 0/1 results into VM

pop Rd, VM Place into Rd the number the 1s in VM

cvm Set VM to all 1s.
mtc1 VLR, Rs Move Rs into vector length register VLR
mfc1 Rd, VLR Move vector length register VLR into Rd

mvtm VM, Fs Move Fs into vector mask register VM
mvfm Fd, VM Move vector mask register VM into Fd


