Ryan Orwoll’s Sheet, Name:_______________

Consider the following recursive class method. 

public static void printStuff(int n) {

if(n > 0) {

printStuff(n - 1);

IO.println(n);

printStuff(n - 2);

}

Suppose a program called printStuff(4). What would the computer print?
1231412
Consider the following recursive class method. 

public static int f(int n) {

    if(n <= 1) {

        return 1;

    } else {

        return f(n - 1) + f(n / 2);

    }

}

Draw the recursion tree illustrating how this function would compute f(5)

          5

        /   \

      4       2

     / \     / \

   3     2   1 1

  / \   / \

 2   1  1 1

/ \

1 1

public class Fibonacci {

    public static void main(String[] args) {

        IO.println("Which Fibonacci? ");

        IO.println("It is " + fib(IO.readInt()));

    }

    private static int fib(int n) {

        if(n <= 1) return 1;

        else return fib(n - 1) + fib(n - 2);
Recursion is the concept of something being defined in terms of itself. It sounds like it's circular - but it's not necessarily so. A circular definition, like defining a rose as a rose, is termed infinite recursion. But some recursive definitions aren't circular: They have a base case, where the recursive definition no longer applies, and the definition for any other case eventually reaches the base case.
To define an abstract class, you would include the word abstract in the class definition. 

public abstract class Account {

    // definition goes in here

}

Now that I've declared this to be abstract, I've prevented anybody from actually creating a simple account. 

Account mine = new Account(); // ERROR: can't instantiate abstract class

Incidentally, classes that are not abstract are typically said to be concrete. These are the classes that you can instantiate.
You can define individual methods within a class as abstract too. When you define a method as abstract, you omit any definition of the method. Instead, anybody who wants to create a subclass must define the method if the subclass is going to be concrete.

Whereas each class can have only one superclass, a single class can implement multiple interfaces.

Interfaces do not allow you to define instance variables or instance methods with a body - an interface can only declare abstract instance methods. Abstract classes, on the other hand, permit both. Thus, Account can be an abstract class, but it can't be an interface, since it defines an instance variable balance. (Another reason is that it defines bodies for its instance methods, like getBalance().) A class can have only one superclass (abstract or not) but can implement many interfaces.
public static void sortBadly(double[] to_sort) {

  for(int i = 0; i < to_sort.length; i++) {

    int item = to_sort[i];

    int dest = 0;

    while(to_sort[dest] < item) {

      dest++;

    }

    for(int j = i; j > dest; j--) {

      to_sort[j] = to_sort[j - 1];

    }

    to_sort[dest] = item;                              =O(n2)

An interface in Java is a set of methods. Any class that claims to implement the interface must define bodies for all these methods.
public class Question3 extends JFrame implements ActionListener {

  private JButton button;

  private JTextField field;

  public Question3() {

    button = new JButton("Reset");

field = new JTextField();
getContentPane().add(field, BorderLayout.CENTER);

pack();
button.addActionListener(this);
  }public void actionPerformed(ActionEvent evt) {
    field.setText("");

  }public static void main(String[] args) {

(new Question3()).show();
for(i = 0; i < arr.length; i++) {

        for(int j = 0; j < arr.length; j++) {

mult[i] [j] = i*j;
