
CSCI 210 Assn. 5: Caching effects

Lab note: You may work with up to one other person on this assignment and submit your solution
together, or you may work alone. The write-up is due at 5:00pm on Friday, April 30. It is worth 40 points.

Objectives

� to see how caching can affect the efficiency of a computer program.� to learn how a program can be modified to take advantage of the cache more fully.

A Observations
You are working on the development team of an image-processing program (such as GIMP or Pho-

toshop), and your supervisor has requested a report investigating whether the component for rotating the
image can be improved.

The “getcs 210 5b” command will fetch an image-processing program for you to use. You should
be able to compile and run these files.

When you select “Open. . . ” from the File menu, the program will start in a directory holding several
copies of an image of varying sizes. (It can load other GIFs and JPEGs, too.) After an image is opened, you
can select “Rotate 1” from the Image menu (or press the ’1’ key) to rotate the image clockwise. Note that
when you rotate the image, the program shows you how much time the rotation took in the label just below
the menu bar. You’ll investigate the performance of the rotation code in this assignment.

Rotating an image is a simple matrix operation, taking an ����� matrix
�

(each entry being the color of
a pixel) and rotating each element

���	�

to
��
��
��������

. Here’s an example:

rotate

��
����� �� � �� !

"$#
%'&

��
� � � � � �! � �

"$#
%

You can see, for example, that
�)(� (

has rotated into
�*(� + & �,(� -.����� (

.
The ImageTransform.javafile contains the code for rotation; this is the code you are investigating.

Because of the Java API’s method of handling images, the Java code actually stores the image as a one-
dimensional array, where entry

� �	�

is stored at array index /0��132 .

Make a table of how much time it takes to rotate each image size. When you measure time, you should
not simply take the first reading you get, because the first reading could be influenced by virtual memory
and cache, where subsequent rotations would not be. A good approach is to rotate the image several times
quickly (more than 5), then computing the average time over the last three times you rotated it.

� time time
54
200
400
600
800

1200
1600
2000

A5–1

A5–2 A5. Caching effects

Since the image rotation process is an ���	� +�� algorithm, you would expect the time divided by � + to be
roughly the same. Note, however, that it is not constant; this is a result of how poorly the rotation code
works with the cache.

B Modifications
Your job for the second part of the lab is to modify the rotation code to avoid this cache effect while still

maintaining the correctness of the code.
To help you with this, let me give you a solution to a similar problem where caching effects are notice-

able. In this problem, our goal is to find the combination of / , 2 , and � so that the sum
� �	�
 1 �
$� � 1 � � � �

is minimum.1 The naı̈ve approach to this is in Figure A5.1(a). Because this code uses an ���	� - � algorithm,
we would expect the time taken by this code divided by � - to be roughly constant as � increases. But mea-
surements would demonstrate an effect similar that seen in Part A: The time divided by � - is not constant,
due to caching effects.

To address this issue, we break the matrix into � � � � � blocks, each easily small enough to be managed
by the cache.

n = 128

 (16, 32) block

 (32, 48) block

 (48, 16) block

16 16 block

Then we analyze each group of three blocks individually. Since all three blocks can fit into the cache with
no problems, the caching effect is avoided. In Figure A5.1(b), bi, bj, and bk iterate through the blocks,
while the inner loops (over i, j, and k) iterate through indices within the blocks.

Your solution should be able to work quickly for any image size, not simply where � is a multiple of 16.
Note that ImageTransform.java provides three methods for writing rotation code, selected through
the menu. This allows you to compare the speed of various algorithms during a single run of the program.

Your write-up for this assignment should be the report you would submit to your supervisor. Your report
should present the two algorithms implemented (the original one tested and your modified version), the
results of testing both algorithms, discussion of these results quantifying how the improvement helped (and
possibly questions raised by the work that you still do not understand), and a recommendation of which to
use and why.

1If you want an application motivating this problem, consider the matrix to be a table of distances between locations. We’re
looking for the set of three places that are closest together.

A5. Caching effects A5–3

int minTriadNaive(int[] a) {
int min = Double.MAX_VALUE;
for(int i = 0; i < n; i++) {

for(int j = 0; j < n; j++) {
for(int k = 0; k < n; k++) {

int entry = a[n * i + j] + a[n * j + k] + a[n * k + i];
if(entry < min) min = entry;

}
}

}
return min;

}
(a) The naı̈ve approach

int minTriadGood(int[] a) {
final int BLOCK = 16;

// if n is below the block size, handle matrix normally.
if(n <= BLOCK) return minTriadNaive(a, n);

int min = Double.MAX_VALUE;
// iterate through all sets of three blocks
for(int bi = 0; bi < n; bi += BLOCK) {

for(int bj = 0; bj < n; bj += BLOCK) {
for(int bk = 0; bk < n; bk += BLOCK) {

// iterate through the indices of the three selected blocks
for(int i = bi; i < bi + BLOCK; i++) {

for(int j = bj; j < bj + BLOCK; j++) {
for(int k = bk; k < bk + BLOCK; k++) {

int entry = a[n * i + j] + a[n * j + k] + a[n * k + i];
if(entry < min) min = entry;

}
}

}
}

}
}
return min;

}

(b) The improved approach

Figure A5.1: Two solutions to finding the closest three points in a matrix.

