
CSCI 210 Assn. 6: Optimizing with a profiler

Lab note: You may work with up to one other person on this assignment and submit your solution
together, or you may work alone. The write-up is due at 5:00pm on Thursday, May 6. It is worth 30 points.

To maintain a total of 1000 points over the semester, the final exam wil be worth only 100 points.

Objectives

� to learn how to use a profiler to analyze the performance of a program.

� to experience the process of optimizing a program’s performance.

Understanding the code
Run “getcs 210 6b” to fetch the code for this assignment. The program (whose main method is

in the Main.java file) is one for identifying “twin cities,” defined as cities that are close together (within
25 miles) and whose populations are close (within a factor of 2 of each other). The program first reads a
file giving the populations of 601 cities, then it reads a file giving the latitude and longitude of 1,181 cities,
storing this data into a CityGroup object. (The files have 324 cities in common.) Then it goes through all
pairs of cities to determine which are pairs.

When you execute the Main class, the program will report how many pairs it found and how long the
process took from start to finish.

unix% java Main
123 twins found among 1458 cities

(2240 ms elapsed)

The program is rather slow. In this assignment, you’ll work to try to make it work faster.

Understanding the profiler
A profiler is a programming tool useful for analyzing the behavior of a program as it executes. There

are profilers for many purposes, including analyzing what code it executes most, the purpose of memory
being used by the program, and understanding locks held by the process’s threads. We’ll use a very simple
profiler called simpprof, which is designed for understanding how much time is spent in various methods of
a Java program.1

The simpprof profiler works via sampling: It periodically interrupts the process to check what method
the process is currently executing. After the process finishes, the profiler reports (in simpprof.txt) how
often the process was in each method of the program. If it gathered several samples, then this should be a
good approximation of how heavily the process used each method in the program.

You can run simpprof on the Solaris systems as follows.2

unix% simpprof-java Main
123 twins found among 1458 cities

(4180 ms elapsed)
Dumping CPU usage by sampling running threads ... done.

Now, if we look at the simpprof.txt file, we will see the following.

1This is a modification of a profiling system that Sun includes with its Java system called hprof. You can read about hprof at the
URL http://java.sun.com/developer/TechTips/2000/tt0124.html#tip2

2Running the profiler will slow the program significantly, since the profiler’s sampling hinders the process’s progress. In this
case, the program took 2240 ms without the profiler, and 4180 ms with. This does not invalidate the profiler’s sampling, but it does
mean that you shouldn’t try to make sense of the time that the the program takes while the profiler is running.

A6–1



A6–2 A6. Optimizing with a profiler

cburch@sun2.cs.csbsju.edu 115% cat simpprof.txt
THREAD START (obj=29a690, id = 1, name="main", group="main")
THREAD END (id = 1)
THREAD START (obj=2a5c0, id = 2, name="DestroyJavaVM", group="main")
THREAD END (id = 2)
samples taken: 77

rank self accum method
1 33.8% 33.8% CityGroup.findTwinCities
2 31.2% 64.9% CityGroup.findCity
3 20.8% 85.7% Location.distanceTo
4 7.8% 93.5% Main.readLocationFile
5 2.6% 96.1% Main.readPopulationFile
6 2.6% 98.7% City.distanceTo
7 1.3% 100.0% Main.main

After several lines talking about threads used by the system, this output reports that simpprof was able to
take 77 samples. Then it lists the methods in which it found the process for each sample. The first line
reports that for 33.8% of the samples, the topmost method in the stack was the findTwinCitiesmethod
of the CityGroup class. The next line reports that for 31.2% of the samples, the topmost method in the stack
was the findCity method of the CityGroup class. (The simpprof profiler passes over Java API methods
as it figures out the topmost method in the stack. Thus, when it reports that it is in the findTwinCities
method, the process may in fact be in the iterator method of the API’s LinkedList class, which was
called by findTwinCities.) Unlisted methods (such as CityGroup’s isTwinCitymethod) were never
the topmost method on the stack during any of the samples.

A6–1. Compile this data on your computer. To get more accurate results, you should profile the same pro-
gram running three different times and average these three runs together.

Optimizing the code
Now we can work on trying to improve the performance. First, we will determine where we should

spend our effort.

A6–2. Suppose we were to rewrite Main’s readLocationFilemethod, and our rewritten method worked
twice as fast. Based on your measurements with simpprof, how much faster will the overall program
be? For which three methods will doubling their speed make the biggest effect? For each of these
methods, how much faster will the program be if you were to improve that method alone? (Express
your answers as percentage decreases: If you compute that the program’s time should be 90% of what
it was prior to improving readLocationFile, then report this as a 10% improvement.)

Incidentally, this analysis is misleading in what methods it indicates you should work on. Often, the best
way to improve a method is to avoid calling it altogether. A lot of time is spent in Location’s distanceTo
method, for example. You could try to rewrite it to make it faster, but there isn’t much hope for this. But
you could speed up the program by making it avoid needless calls to distanceTo.

A6–3. Now rewrite a few methods that you have determined are worth rewriting. You should be able to pare
off at least 300 milliseconds in the program’s running time. Your solution to this problem should be a
description of your modifications.

Run “handincs 210 6b” to submit your code.

A6–4. Run your program five times and compute the average of the last three runs. Do the same for the
original program (available on the command line as twincities). Report these numbers as evidence
that your modified program is significantly faster than the original program.


