
Questions 1

Question 4.1–1: (Solution, p 5) Define the fetch-execute cycle as it relates to a computer processing a
program. Your definition should describe the primary purpose of each phase.

Question 4.1–2: (Solution, p 5) Explain in detail what the HYMN CPU does during the fetch phase of the
fetch-execute cycle. (Your explanation should describe how the computer accesses values in registers and
memory.)

Question 4.2–1: (Solution, p 5) Suppose that the HYMN CPU begins with the following in memory.

addr data (translation)
00000 100 11110 LOAD 11110
00001 101 11111 STORE 11111
00010 110 11110 ADD 11110
00011 101 11111 STORE 11111
00100 110 11110 ADD 11110
00101 101 11111 STORE 11111
00111 000 00000 HALT

If the user typed multiples of 25 starting at 25 (25, then 50, then 75,. . .) when prompted, what would the
computer display?

Question 4.2–2: (Solution, p 5) Suppose that the HYMN CPU begins with the following in memory.

addr data (translation)
00000 100 11110 LOAD 11110
00001 110 11110 ADD 11110
00010 011 00001 JPOS 00001
00011 000 00000 HALT

If we repeatedly type the number 32 ������� when prompted, how many times would we type it before the
computer halts?

Question 4.2–3: (Solution, p 5)
Suppose that the HYMN CPU begins with mem-
ory contents at right.

a. List all new values stored in memory as the
program executes. Express your answers in
binary or hexadecimal.

b. What values does the AC hold in the course
of executing this program? Express your
answers in binary or hexadecimal.

addr data (translation)
00000 100 01001 LOAD 01001
00001 010 01000 JZER 01000
00010 110 01010 ADD 01010
00011 101 01010 STORE 01010
00100 100 01001 LOAD 01001
00101 110 00000 ADD 00000
00110 101 00000 STORE 00000
00111 001 00000 JUMP 00000
01000 000 00000 HALT
01001 000 00001 1
01010 000 00010 2
01011 000 00100 4
01100 000 00000 0

2 Questions

Question 4.3–1: (Solution, p 5) Translate the following HYMN assembly language program into machine
language. Express your answer in bits.

READ
top: WRITE

ADD one
JPOS top
HALT

one: 1

addr data
00000
00001
00010
00011
00100
00101
00110
00111

Question 4.3–2: (Solution, p 5) Write a HYMN assembly language program that reads a number � from
the user and then displays � ’s absolute value. (The absolute value of a number is that number with any
negative sign removed. The absolute value of �

�
is 5, while the absolute value of 3 is 3 itself.)

Question 4.3–3: (Solution, p 6) Write a HYMN assembly language program that reads a number � and
displays the powers of two that are less than � . Your program may assume that � is more than 1.

Question 5–1: (Solution, p 6) Consider the following Intel assembly code.

movl $7, %eax
movl $4, %ebx
movl $4, %ecx

again: pushl %eax
addl %ebx, %eax
popl %ebx
decl %ecx
jnz again

Show all values taken on by the registers as this program executes.

eax
ebx
ecx

Questions 3

Question 5–2: (Solution, p 6) Translate each of the following Intel assembly programs, generated by gcc,
back to their nearest C equivalents.

a. b.
.section .rodata
.LC0: .string ”%d”
.LC1: .string ”%d %d � n”
.section .text
.globl main
main: pushl %ebp

movl %esp, %ebp
subl $4, %esp
leal -4(%ebp), %eax
pushl %eax
pushl $.LC0
call scanf
movl $1, %ecx
xorl %eax, %eax
addl $8, %esp
movl -4(%ebp), %edx
cmpl %edx, %eax
jge .L18

.L20: addl %eax, %ecx
incl %eax
cmpl %edx, %eax
jl .L20

.L18: pushl %ecx
pushl %edx
pushl $.LC1
call printf
xorl %eax, %eax
leave

ret

.section .rodata

.LC0: .string ”%d”

.LC1: .string ”%d � n”

.section .text
.align 4

main: pushl %ebp
movl %esp, %ebp
subl $4, %esp
pushl %ebx
leal -4(%ebp), %eax
pushl %eax
pushl $.LC0
call scanf
xorl %ebx, %ebx
addl $8, %esp
cmpl -4(%ebp), %ebx
jge .L18

.L20: pushl %ebx
pushl $.LC1
call printf
addl $8, %esp
addl %ebx, %ebx
cmpl -4(%ebp), %ebx
jl .L20

.L18: xorl %eax, %eax
movl -8(%ebp), %ebx
leave
ret

Question 6.1–1: (Solution, p 6) Suppose that eax held 104 ������� and esp held 20C � ����� when an x86 processor
begins to execute the instruction “pushl %eax.” Explain how the CPU alters the values in registers and
memory.

Question 6.1–2: (Solution, p 6) Suppose we have a C function myst that takes two integers as an argument.

int myst(int x, int y);

Write an x86 assembly language code fragment that places the value of myst(6, 10) into the edx regis-
ter. The fragment should include code to restore the program stack to its original state.

Question 6.2–1: (Solution, p 6) Explain what the Intel processor does when it executes the instruction “call
fact.” That is, explain how the CPU alters the values in registers and memory.

Question 6.2–2: (Solution, p 7) What operations does an Intel processor perform in executing a ret instruc-
tion? That is, how do the values in registers change? How does the computer determine which instruction
to execute next?

4 Questions

Question 6.2–3: (Solution, p 7) How are parameter values passed to a subroutine, according to the Intel
processor conventions? How does the subroutine communicate its return value?

Question 6.2–4: (Solution, p 7) Define the purpose of the frame pointer (conventionally the ebp register
on x86 processors).

Question 6.2–5: (Solution, p 7) Consider the following C function and its Intel assembly translation at
right.

int add(int x, int y) {
return x + y;

}

add: pushl %ebp
movl %esp, %ebp
???
addl %ebx, %eax
leave
ret

What two instructions should go in place of “???” to load the x parameter into the eax register and the y
parameter into the ebx register?

Question 6.3–1: (Solution, p 7) Distinguish between callee-save registers (ebx, esi, edi on Intel processors)
and caller-save registers (ecx, eax, edx on Intel processors).

Solutions 5

Solution 4.1–1: (Question, p 1) The fetch-execute cycle is the process by which a classical computer
executes instructions. In the fetch phase, the computer determines the next instruction to be completed by
fetching the instruction from memory. In the execute phase, the computer executes this instruction. The
computer alternates between these two phases as long as it is on.

Solution 4.1–2: (Question, p 1) It looks into the PC for a memory address, requests the information at that
address from RAM via the bus, and stores RAM’s response in the IR.

Solution 4.2–1: (Question, p 1)

? 25
25
? 50
75
? 75
-106

(This last output is somewhat tricky: In the last ADD instruction, the CPU computes � ��� � ����� ���
, but

this exceeds the maximum eight-bit two’s-complement number. So the computer wraps around ends up at� ���
�
	 ���
�

�
�����

.)

Solution 4.2–2: (Question, p 1) It would read from the user four times before halting (with the AC pro-
gressing from ��	 to

���
to � � to �

� 	��).

Solution 4.2–3: (Question, p 1) a. address 00000: 8A 8B 8C
address 01010: 03 06 0A

b. AC: 01 03 01 8A 03 06 01 8B 04 0A 01 8C 00

Solution 4.3–1: (Question, p 2) addr data (translation)
00000 100 11110 LOAD 11110
00001 101 11111 STORE 11111
00010 110 00101 ADD 00101
00011 011 00001 JPOS 00001
00100 000 00000 HALT
00101 000 00001 1

Solution 4.3–2: (Question, p 2)

READ
JPOS ok
STORE n
SUB n
SUB n

ok: WRITE
HALT

n: 0

6 Solutions

Solution 4.3–3: (Question, p 2)

READ
STORE n

up: LOAD i # display i
WRITE
ADD i # double i
STORE i
LOAD n # repeat if n - i > 0
SUB i
JPOS up
HALT

n: 0
i: 1

Solution 5–1: (Question, p 2)

eax 7 11 18 29 47
ebx 4 7 11 18 29
ecx 4 3 2 1 0

Solution 5–2: (Question, p 3) There will be considerable variation in the answers to these questions, but
the following are the actual C programs used to generate the code.

a. b.
#include <stdio.h>

int main() {
int i, a, n;

scanf("%d", &n);
a = 1;
for(i = 0; i < n; i++) {

a += i;
}
printf("%d %d\n", n, a);

return 0;
}

#include <stdio.h>

int main() {
int i, n;

scanf("%d", &n);
for(i = 0; i < n; i *= 2) {

printf("%d\n", i);
}

return 0;
}

Solution 6.1–1: (Question, p 3) The processor will first decrease the value in esp by 4, and then it will
store the contents of eax in that memory address. In this case, esp would change to 208 � ����� , and the four
bytes of memory beginning at address 208 � ����� would change to hold 104 � ����� .

Solution 6.1–2: (Question, p 3)

pushl $10 # Push arguments onto stack
pushl $6
call myst # Call subroutine
addl $8, %esp # Pop arguments from stack
movl %eax, %edx # Copy return value into edx

Solution 6.2–1: (Question, p 3) It pushes the current value of eip onto the stack (decreasing esp by 4
in the process) and then it places the address of fact (the first instruction of the subroutine) into eip. This
way, when the computer fetches the next instruction to execute, it fetches the first instruction of the fact
subroutine, and the return address is lying on the stack for a later ret instruction to pop.

Solutions 7

Solution 6.2–2: (Question, p 3) The processor pops the top four bytes off the stack into the eip register.
In doing this, it will add four to the esp register to represent the fact that the top four bytes are gone from
the stack. The next instruction executed by the processor will be the instruction found at the address popped
from the stack.

Solution 6.2–3: (Question, p 4) Before the subroutine is called, the calling code should push the parameters
onto the stack, with the first parameter pushed last. The called subroutine, then, can access the parameter
values by looking into the stack relative to the stack pointer it receives.
When a subroutine is to return a value, it should place this into the eax register, according to the Intel
convention.

Solution 6.2–4: (Question, p 4) The frame pointer is meant to contain the value of the esp at the time the
system enters the current subroutine. The purpose of maintaining the frame pointer is to provide a fixed
reference point from which to access local variables located on the stack and parameters (accessing items on
the stack relative to esp is inconvenient since it shifts with every push and pop instruction). (Secondarily,
it is also useful to have this so that the program can restore esp to the proper value before returning from
the subroutine without worrying about taking care to pop each thing off the stack that was pushed.)

Solution 6.2–5: (Question, p 4)

movl 8(%ebp), %eax
movl 12(%ebp), %ebx

Solution 6.3–1: (Question, p 4) A subroutine is allowed to change the caller-save registers without restor-
ing them, but it must ensure that callee-save registers, if used, are restored to their values on entering the
subroutine.

