
Questions 1

Question 8.1–1: (Solution, p 3) Name at least two generic purposes of an operating system.

Question 8.1–2: (Solution, p 3) One way of receiving a response from a device is to poll it periodically
about whether it has any additional information. What is wrong with this technique, and how do most
modern computer systems circumvent it? Explain the alternative.

Question 8.1–3: (Solution, p 3) When the CPU receives an interrupt, how does it determine what instruction
to execute next?

Question 8.1–4: (Solution, p 3) Because other users’ information is stored on the disk, a multiuser computer
system cannot allow a process to access the disk directly. Yet programs often need to read from the disk.
Explain how a computer system can allow this without compromising security.

Question 8.1–5: (Solution, p 3) For each of the following CPU instructions, which of the following applies?

A. The instruction should be permitted whether the CPU is running in user mode or kernel mode.

B. The instruction should be allowed only when the CPU is running in kernel mode.

a. Switch from user mode to kernel mode.

b. Send a software-initiated interrupt to the CPU.

c. Disable interrupts by clearing the interrupt flag.

d. Send information to an I/O device.

e. Call a subroutine.

Question 8.1–6: (Solution, p 3) What distinguishes system calls (like write) from library functions (like
printf)?

Question 8.2–1: (Solution, p 4) Outline the details of what happens when a process makes a system call
necessitating communication with a device.

Question 8.2–2: (Solution, p 4) Because the CPU can run only one thread of execution at once, when a
user program is running, the operating system cannot be. How, then, can it manage to preempt a running
program that runs for a long period of time and attempts to run beyond its time slice?

Question 8.2–3: (Solution, p 4) In the following diagram illustrating the various states a process can be in,
draw arrows connecting each pair of states that a preemptive operating system may move a process between.
Label each arrow with a brief description of a situation where the operating system would move the process
as indicated.

ReadyRunning

Blocked

Question 8.2–4: (Solution, p 4) Explain why the operating system would move a process in the Running
state to the Blocked state instead.

Question 8.2–5: (Solution, p 4) Describe a situation where the operating system would move a process
from the Blocked state to the Ready state.



2 Questions

Question 8.3–1: (Solution, p 4) What does Linux do when requested to perform the execve (or execvp)
system call?

Question 8.3–2: (Solution, p 4) Explain what a Unix shell does so that the output of a process is redirected
into a file instead of to the screen, as it is told to do in the following shell command.

unix% wc words > count

Question 10.1–1: (Solution, p 5) In an operating system, how are threads and processes different?

Question 10.1–2: (Solution, p 5) Suppose we are writing a Web server. Explain how threads would be
useful for our program, and describe why they are useful in this context.

Question 10.1–3: (Solution, p 5) Name and explain two reasons that threads are a useful in programming.



Solutions 3

Solution 8.1–1: (Question, p 1) There were three that we examined in class, but potentially there are others
too.

� Abstract complex resources.

� Provide hardware compatibility.

� Protect the system from untrustworthy programs.

Solution 8.1–2: (Question, p 1) Polling wastes precious processor time repeatedly querying devices. Mod-
ern computer systems provide a way for devices to send “interrupts” to the CPU, allowing the device to
send a signal to the CPU, whereupon the CPU would enter its “interrupt handler” to handle the fact that the
device is now ready.

Solution 8.1–3: (Question, p 1) Each interrupt has an associated identifying number. The CPU uses this as
an index into the exception table, where it finds the address of the first instruction in the exception handler for
that identifier. It executes the instruction at this address next. (The OS would have registered its exception
handler into the exception table as the computer started.)

Solution 8.1–4: (Question, p 1) The CPU implements two modes, kernel mode and user mode, and prevents
a process from accessing the disk directly while in user mode. The operating system enters user mode every
time it exits into a user program, so that the user program runs in user mode and cannot access the disk.
But the user program can initiate an interrupt using a CPU instruction, whereupon the CPU will switch
into kernel mode as part of the interrupt process and jump into the interrupt handler, implemented by the
operating system. The operating system’s handler, running in kernel mode, can access the disk on the
process’s behalf (after it verifies that the request is legitimate) before returning back into the user program
in user mode.

Solution 8.1–5: (Question, p 1)

a. B

b. A

c. B

d. B

e. A

Solution 8.1–6: (Question, p 1) Code for system calls are included in the operating system, while code
for library functions are included with the running program. Thus, a system call’s code runs in kernel
(unprotected) mode, while a library function’s code runs in user mode. A program enters a system call by
initiating a software interrupt, while a program enters a library function by calling a subroutine included
with the program.



4 Solutions

Solution 8.2–1: (Question, p 1)

1. The running process sends a system call via an interrupt.

2. The CPU looks up the location of the interrupt handler in the exception table and jumps there.

3. The interrupt handler saves all the registers of the running process into that process’s entry of the
process table.

4. If another process is already waiting for the device to respond, the interrupt handler places the process
into a waiting queue for that device. Otherwise, the process’s request is sent to the device.

5. The interrupt handler selects the next process to execute from the ready queue.

6. The interrupt handler restores the registers to the values saved in the next process’s entry of the process
table.

7. The interrupt handler returns to the address stored in the next process’s entry of the process table.

Solution 8.2–2: (Question, p 1) Before beginning to run the user program, the OS schedules the clock
device to send an interrupt. When this interrupt occurs, the CPU automatically jumps into the exception
handler for the clock’s interrupt, at which time the OS is running and can preempt the process.

Solution 8.2–3: (Question, p 1)

ReadyRunning

Blocked

CPU is idle,
ready to work

process’s time slice has expired

I/O device has completed
action necessitated by process

process makes request
forcing communication

with I/O device

Solution 8.2–4: (Question, p 1) When a running process requests interaction with a device that cannot
immediately respond, the operating system moves it into the Blocked state so that it will not occupy CPU
time while the device is working.

Solution 8.2–5: (Question, p 1) A process is typically in the Blocked state when it is waiting for some
response from a I/O device (such as the keyboard or hard drive). The operating system would move it into
the Ready state when it has received a response for the I/O device for the blocked process.

Solution 8.3–1: (Question, p 2) It replaces the currently running process with the program specified in the
parameters to execve. The new process keeps the state of the replaced process, but its memory changes to
the memory image required by the program, and execution enters the started program. Execution will not
return to the program calling execve unless an error prevents the OS from executing the request.

Solution 8.3–2: (Question, p 2) Since the wc command writes to file descriptor 1, the shell must insure
that file descriptor 1 for the process running wc will refer to the count file. To accomplish this, it closes
file descriptor 1 in the child process it creates for running wc and then designates descriptor 1 to refer to
the count file instead. Thus, when wc runs and writes to file descriptor 1, the output will go into the file
instead of to the screen.



Solutions 5

Solution 10.1–1: (Question, p 2) Threads are individual execution sequences occurring within the same
process. The operating system allocates resources (such as memory and file descriptors) to a process as
a whole, and individual threads within that process share these resources. Thus, a process is a resource
allocation unit with at least one thread, while a thread is an execution sequence working within the resources
allocated to the process.

Solution 10.1–2: (Question, p 2) For good performance, a Web server must communicate with many
browsers simultaneously, and it is natural to have a single thread handle each individual browser connection.
This technique is useful for three reasons. [One is sufficient for the solution.]

� Implementing the Web server as a single process without threads requires the programmer to write
code that switches between discussions among browsers, which is difficult and conducive to program-
mer errors.

� If the Web server were implemented to create a new process for each Web browser connection, the
high overhead of process creation would damage the program’s efficiency.

� Also in the multi-process solution, having multiple processes would interfere with the possibility that
the responding processes might want to share information between themselves.

Solution 10.1–3: (Question, p 2) Any two of the following would be good.

� A programmer using threads can conceptualize a process as doing one thing at a time, even though
the process will actually be doing many things simulataneously.

� Threads use less system resources than separate processes.

� A process can continue perform computation during long I/O tasks (even when a system call is
blocked).


