Name:

1. [10 pts] Tests on an Intel Pentium III processor reveal that the performance of the code at right depends heavily on the value of skip.

skip	time
16,352	40 ms
16,384	480 ms

Surprisingly, with a *larger* value of skip, for which the code will add *fewer* numbers, the code takes twelve times as long.

Explain how the cache is making a difference here. (Recall that a Pentium III's L1 cache is 4way set associative, with 512 lines, each of 32 bytes. Note that the cache holds $512 \times 32 = 16,384$ bytes.)

```
int sum(char *arr, int skip) {
    int i, k, total;
    total = 0;
    for(k = 0; k < 4000; k++) {
        for(i = k; i < 4000000; i += skip) {
            total += arr[i];
        }
    }
    return total;
}</pre>
```

2. [10 pts] Define the *relocation problem* that arises in the context of segments.

3. [10 pts] Describe the purpose of the *dirty bit* found in each page table entry in most virtual memory systems. How does the use of the dirty bit help the system's performance?