
Questions 1

Question 3.3–1: (Solution, p 3)

a. Give an example of an eight-bit number which, when arithmetically right-shifted one place, is different
from the same number logically right-shifted one place.

b. Give an example of an eight-bit number which, when arithmetically right-shifted one place, is the
same as the same number logically right-shifted one place.

Question 3.3–2: (Solution, p 3) Consider the following C program.

#include <stdio.h>

int mystery(int n, int i) {
return (n >> i) & ˜(-1 << i);

}

int main() {
printf("%d %d %d %d\n", mystery(0xFF, 2), mystery(0xFF, 5),

mystery(0x77, 3), mystery(0x02040608, 8));
return 0;

}

What would this program print when run?

Question 3.3–3: (Solution, p 3) Consider the following C function.

int f(int x, int n) {
return x | (1 << (n - 1));

}

a. What does f(0, 2) return?
b. What about f(8, 2)?
c. What about f(f(0, 1), 2)?

Question 3.3–4: (Solution, p 3) Without using a loop, write a C function that retrieves the whichth bit
from a number num. The which parameter should be between 0 and 31, where 0 represents the one’s bit of
the bit pattern, 1 represents the two’s bit, and so forth. For example, getBit(12, 2) and getBit(12,
3) should return 1, while getBit(12, 1) and getBit(12, 4) would return 0.

int getBit(int num, int which) {

}

Question 3.3–5: (Solution, p 3) Without using loops or conditional statements, complete the following
C function so that it returns the largest power of 2 that divides into its parameter value n exactly. Thus,
divisor pow2(52)would return 4, while divisor pow2(56)would return 8.

int divisor_pow2(int n) {

}

Hint: You can find the largest power of 2 dividing into a number exactly by finding the rightmost bit of the
number. For example, 52 ��������� 110100 �
	�� has its rightmost bit in the 4’s place; 56 ��������� 111000 ��	�� has the
rightmost bit in the 8’s place.

2 Questions

Question 3.4–1: (Solution, p 3) Consider a 6-bit floating-point representation with a 3 bits for the excess-3
exponent and 2 bits for the mantissa.

a. How would 0.75 � ����� be represented in this 6-bit representation?
b. What decimal value does 011010 represent?
c. What decimal value does 000010 represent?
d. How would infinity (�) be represented in this representation?

Question 3.4–2: (Solution, p 3) Consider a 7-bit floating-point representation with a 3 bits for the excess-3
exponent and 3 bits for the mantissa.

a. What values do 1010100 and 00000100 represent? Express each answer as a decimal number or a
base-10 fraction.

b. What is the bit pattern of the smallest positive normalized number supported by this representation?
Convert this to a decimal fraction or number.

c. What is the bit pattern of the largest denormalized number supported by this representation? Convert
this to a decimal fraction or number.

d. Suppose we add 0101010 and 1111000 as 7-bit floating-point numbers. What is the bit pattern of the
result?

Question 3.4–3: (Solution, p 3) Give an example of three floating-point numbers � , � , and � , such that
the distributive property �����	�
��� � ��	�
��� does not hold. (Feel free to describe the values rather than
give numerical values: For example, you might say “the largest denormalized number” rather than give a
particular value.) Note: Your answer should include the values of ����������� and ������� for your values of
� , � , and � .
Question 3.4–4: (Solution, p 3) Give an example of three floating-point numbers � , � , and � such that the
associative property of addition ������������� � ������������� does not hold. (Feel free to describe the values
rather than give numerical values: For example, you might say “the largest denormalized number” rather
than give a particular value.) Note: Your answer should include the values of �	����������� and �������������
for your values of � , � , and � .

Solutions 3

Solution 3.3–1: (Question, p 1)

a. 11111111 (or any other sequence beginning with 1).

b. 00000000 (or any other sequence beginning with 0).

Solution 3.3–2: (Question, p 1) 3 7 6 6

Solution 3.3–3: (Question, p 1) a. 2
b. 10
c. 3

Solution 3.3–4: (Question, p 1)

int getBit(int num, int which) {
return (num >> which) & 1;

}

Solution 3.3–5: (Question, p 1)

int divisor_pow2(int n) {
return n & -n;

}

Solution 3.4–1: (Question, p 2) a. 001010
b. 12.0 �������

c. 0.125 �������

d. 011100

Solution 3.4–2: (Question, p 2) a. � 0.75 ������� , 0.125 �������

b. 0001000, which converts to
�����

or ���
	��
c. 0000111, which converts to ��� 	 or ���
	 ���
d. 1111000 (since anything added to � � is � �)

Solution 3.4–3: (Question, p 2) One possibility is � = 0.5, � = largest possible number, and � = 1. In this
case, ����������� is infinity, while �� ���� is a finite number.
Another possibility is � � � , � � � � , and � � �

. In this case, ����� � ��� is infinity (since ��� � � �),
while �� ���� is NaN (since � � � � � NaN).
While these answers are fine, they are somewhat dissatisfying because of their reliance on overflow. Another
possibility, which does not resort to nonnumeric values, has � = 0.5, � = smallest possible number, and � =
smallest possible number. In this case, ����� ��� � is the smallest possible number, while � � ���� results in
adding two numbers that are too small to represent, so we get 0.

Solution 3.4–4: (Question, p 2) Suppose � � ��	
��� �

, � � 	
��� �

, and � � �
. Then

�	����� ��� � � ��	
��� �
� ��	

��� �
� � � � ��	

��� �
��	

��� �
� �

(
��� �
� � � 	

��� �
since the 1 can’t be represented within the number’s precision) and

���	��� ����� � ����	
��� �
��	

��� �
��� � � � � � � �

