
Questions 1

Question 6.4–1: (Solution, p 4) In class, we examined an alternative to using a stack for supporting sub-
routines, where each subroutine would have its own static memory locations for remembering data. For
example, consider the following square() function.

int square(int n) {
return n * n;

}

This would be translated as follows into x86 assembly.

.section .data
sq n: .long 0 # for passing the parameter value into square
sq ret: .long 0 # remembers return address within caller of square
.section .text
square: movl (sq n), %eax

imull %eax
jmp *(sq ret)

We saw that this scheme was wasteful of space and was not amenable to recursion.

a. Explain why stack allocation uses memory more efficiently than this described static allocation alter-
native.

b. Explain why recursion is difficult with static allocation.

Question 7.1–1: (Solution, p 4)
The x86 assembly code at right is a straightfor-
ward translation of the following C fragment.
do {

ecx += 2 * edi;
ecx -= 2 * esi;
esi++;

} while(esi < edi);

Identify which of the following optimization tech-
niques each of the following most represents.

A. peephole optimization

B. common subexpression elimination

C. strength reduction

up: movl %edi, %eax # ecx += 2 * edi;
imull $2
addl %eax, %ecx

movl %esi, %eax # ecx -= 2 * esi;
imull $2
subl %eax, %ecx

incl %esi # esi++;

cmpl %edi, %esi # if(esi � edi) goto up;
jl up

a.
movl %edi, %eax
imull $2
movl %eax, ebx

up: addl %ebx, %ecx
movl %esi, %eax
imull $2
subl %eax, %ecx
incl %esi
cmpl %edi, %esi
jl up

b.
movl %esi, %ebx
addl %ebx, %ebx

up: movl %edi, %eax
imull $2
addl %eax, %ecx
subl %ebx, %ecx
incl %esi
addl $2, %ebx
cmpl %edi, %esi
jl up

c.
up: movl %edi, %eax

addl %eax, %eax
addl %eax, %ecx
movl %esi, %eax
addl %eax, %eax
subl %eax, %ecx
incl %esi
cmpl %edi, %esi
jl up

2 Questions

Question 7.1–2: (Solution, p 4)
Consider the following C code with its Intel trans-
lation at right. The assembly translation uses ecx
for i, ebx for n, and esi for j.

for(int i = 0; i < n; i++)
j += 2 * i + 1;

For each of the following, select which of the fol-
lowing optimization techniques is being applied.

A. peephole optimization

B. common subexpression elimination

C. strength reduction

D. loop unrolling

xorl %ecx, %ecx
again: cmpl %ebx, %ecx

jge done

movl $2, %eax
mull %ecx
addl $1, %eax
addl %eax, %esi

incl %ecx
jmp again

done:

a.
xorl %ecx, %ecx

again: cmpl %ebx, %ecx
jge done

movl $2, %eax
mull %ecx
addl $1, %eax
addl %eax, %esi

incl %ecx
cmpl %ebx, %ecx
jge done

movl $2, %eax
mull %ecx
addl $1, %eax
addl %eax, %esi

incl %ecx
jmp again

done:

b.
xorl %ecx, %ecx

again: cmpl %ebx, %ecx
jge done

leal 1(%esi, %eax, 2), %esi

incl %ecx
jmp again

done:

c.
xorl %ecx, %ecx
movl $1, %edx

again: cmpl %ebx, %ecx
jge done

addl %edx, %esi

incl %ecx
addl $2, %edx
jmp again

done:

Questions 3

Question 7.1–3: (Solution, p 4)
The C code below translates to the assembly lan-
guage at right. The assembly code uses ecx for
holding i, ebx for holding n, and edi for hold-
ing a.
for(i = 0; i < n; i++) {

a[i] = 2 * n - 2 * i + 1;
}

Rewrite the assembly code below to illustrate the
following two optimization techniques.

a. Common subexpression elimination

b. Strength reduction

xorl %ecx, %ecx
cmpl %ebx, %ecx
jge done

again: movl %ebx, %eax
shll $1, %eax
movl %ecx, %edx
shll $1, %edx
subl %edx, %eax
incl %eax
movl %eax, (%edi, %ecx, 4)

incl %ecx
cmpl %ebx, %ecx
jl again

done:

Question 7.1–4: (Solution, p 5)
The C code below translates to the assembly lan-
guage at right. The assembly code uses ecx for
holding i, ebx for holding n, and edi for hold-
ing a.
for(i = 0; i < n; i++) {

a[i] = 23 * i;
}

Rewrite the assembly code at right to illustrate the
optimization technique of strength reduction.

xorl %ecx, %ecx
cmpl %ebx, %ecx
jge done

again: movl %ecx, %eax
imull $23
movl %eax, (%edi, %ecx, 4)

incl %ecx
cmpl %ebx, %ecx
jl again

done:

Question 7.1–5: (Solution, p 5) Under what conditions can a compiler identify a recursive function as
being tail-recursive, and hence eligible for having the recursive call optimized out?

4 Solutions

Solution 6.4–1: (Question, p 1)

a. With stack allocation, only those subroutines currently being executed require memory. With static
allocation, all subroutines, whether being executed or not, require memory for their data. As a result,
much statically allocated space lies unused much of the time.

b. The problem arises when a subroutine wants to remember data through a recursive call. If the sub-
routine stores the needed data at a fixed location, then the recursive call, which itself will want to
remember data through its own recursive call, will place its data at this same location. This will
destroy the information saved there by the first call to the subroutine.

Solution 7.1–1: (Question, p 1)

a. B. common subexpression elimination

b. C. strength reduction

c. A. peephole optimization

Solution 7.1–2: (Question, p 2)

a. D. loop unrolling

b. A. peephole optimization

c. C. strength reduction

Solution 7.1–3: (Question, p 3)
a. Common subexpression elimination

movl %ebx, %esi
shll $1, %esi
incl %esi
xorl %ecx, %ecx
cmpl %ebx, %ecx
jge done

again: movl %esi, %eax
movl %ecx, %edx
shll $1, %edx
subl %edx, %eax
movl %eax, (%edi, %ecx, 4)

incl %ecx
cmpl %ebx, %ecx
jl again

done:

b. Strength reduction

movl %ebx, %esi
shll $1, %esi
incl %esi
xorl %ecx, %ecx
cmpl %ebx, %ecx
jge done

again: movl %esi, (%edi, %ecx, 4)
subl $2, %esi

incl %ecx
cmpl %ebx, %ecx
jl again

done:

Solutions 5

Solution 7.1–4: (Question, p 3)

xorl %ecx, %ecx
cmpl %ebx, %ecx
jge done
xorl %eax, %eax

again: movl %ecx, %eax
movl %eax, (%edi, %ecx, 4)

addl $23, %eax
incl %ecx
cmpl %ebx, %ecx
jl again

done:

Solution 7.1–5: (Question, p 3) The recursive call must be the last thing done before finishing the function.
If the function is to return a value, the return value must be the same as the value returned by the recursive
call.

