
Exam 1, CSCI 210, Spring 2004

Name:

1. [10 pts] How would the behavior of the following two Unix shell commands differ?

unix% grep open f > wc
unix% grep open f | wc

2. [5 pts] Suppose we are using an 7-bit floating-point representation with 3 bits for the excess-3 expo-
nent and 3 bits for the mantissa, supporting the denormalized and the nonnumeric cases.

What bit pattern represents 0.125 ������� ?

3. [30 pts] Translate the follow-
ing C function into a subrou-
tine in the x86 assembly lan-
guage. The entry and exit
templates are already pro-
vided. (I recommend using
the callee-save register ebx
to hold n.)
int lastOf(int n) {

int k;

while(n != 0) {
scanf("%d", &k);
n--;

}
return k;

}

.section .data
fmt: .string ”%d”
.section .text
lastOf: pushl %ebp # entry template

movl %esp, %ebp

movl %ebp, %esp # exit tempate
popl %ebp
ret



Exam 1, CSCI 210, Spring 2004 2

4. [10 pts] Suppose that gcc sees the following while loop.

while(ecx < edx) {
eax += ecx;
ecx++;

}

In compiling this code for the x86 CPU, gcc will choose version (b.) of the following two alternatives,
even though it is less intuitive and longer (six versus five instructions).

a.
loop: cmpl %edx, %ecx

jge done
addl %ecx, %eax
incl %ecx
jmp loop

done:

b.
cmpl %edx, %ecx
jge done

loop: addl %ecx, %eax
incl %ecx
cmpl %edx, %ecx
jl loop

done:

Explain why the compiler prefers (b.).

5. [15 pts] Explain the optimization technique of strength reduction. In what situations does it apply?
How does a compiler transform code using the technique? Feel free to give an example before and
after the optimization; you might write the example in C or in x86 assembly.



Exam 1, CSCI 210, Spring 2004 3

6. [10 pts] Consider the following code, using the findGoldbach() function you wrote for Lab 1.

a.

int main() {
int n;

scanf("%d", &n);
if(findGoldbach(n) != 0) {

printf("%d %d\n", findGoldbach(n),
n - findGoldbach(n));

} else {
printf("no pair found\n");

}
return 0;

}

b.

int main() {
int n, p;

scanf("%d", &n);
p = findGoldbach(n);
if(p != 0) {

printf("%d %d\n", p, n - p);
} else {

printf("no pair found\n");
}
return 0;

}

Both alternatives work the same. But version (a.) is considerably slower, since findGoldbach()
is quite slow, and (b.) uses findGoldbach() only once, whereas (a.) may call it as many as three
times.

Given (a.), gcc will not choose to optimize it by transforming it to (b.). despite the fact that (b.) works
identically and is much faster. Explain why it does not perform this optimization.


