
CSci 340, Spring 2003, Project 0

This project is due Friday, January 31 at 11:20am. To submit your final solution, run the “handincs
340 1” command and submit a paper copy of your well-documented, well-written code for evaluation.

To begin work on this assignment, run the command “getcs 340 1”. This will place many useful
files into your CS340/Lab1 directory.

Makefile data explaining how to make the program
scan.ad[bs] Token Type type; Next Token and Token Error procedures
parse tree.ad[bs] Parse Node type; New Parse ??? functions; Print Parse Tree procedure
variables.ad[bs] Variable Type and Variable Set types; Empty Variable Set and

Find Variable functions; Add Variable procedure
parse.ad[bs] Parse File function (you will complete this file)
typecheck.ad[bs] Type Check function (you will complete this file)
main.adb Main procedure

Your job is to complete parse.adb and typecheck.adb. While you are welcome to modify the other
files, none of this code will be considered part of your assignment solution.

Given an input file, your “compiler” either should print the program’s abstract syntax tree if the program
passes compilation and an error message if the input program is not in this subset language or has a type
error. Printing the abstract syntax tree is not a particularly useful thing to do; in the second project, we’ll
complete the project to do something more useful with the syntax tree.

The distributed code already contains code for handling the program, vardecs, and factor metavariables.
Your job in this project is to write functions for the other metavariables to complete the job of building the
parse tree. You will also complete the Type Check function of typecheck.adb to verify that the
generated parse tree uses types correctly.

In this project, you will build a parser for the subset of Ada described by the following EBNF grammar.

program � procedure identifier is begin vardecs begin stmts end identifier semicolon
vardecs � identifier colon (integer

�
boolean) semicolon vardecs

���
stmts � stmt stmts

�
stmt

stmt � while expr loop stmts end loop semicolon�
if expr then stmts end if semicolon�
identifier assignment expr semicolon�
get left parenthesis identifier right parenthesis semicolon�
put left parenthesis expr right parenthesis semicolon

expr � arith [(is equal
�
is not equal

�
is less than

�
is greater than) arith]

arith � term � (plus
�
minus) term �

term � factor � (star
�
slash) factor �

factor � number
�
identifier

�
true

�
false

�
left parenthesis expr right parenthesis

There are many things that this language does not include, and so your compiler doesn’t need to consider
them either. Among these are nested procedures, else clauses, and the negation operator.

This language supports only Integer and Boolean types for its variables. A program using types correctly
obeys the following rules.

� The +, -, *, /, <, and > can operate only on integers.

� The = and /= operators should have the same type on both sides (Integer or Boolean).

� In an assignment statement, the type of the expression must match the assigned variable’s type.

� The Get and Put statements must work only with integers.

� The expressions after if and while must be Boolean expressions.

The following is an example of compiling and running the compiler.

unix% cat test.ada
procedure Test is

I : Integer;
begin

I := 0;
while I < 10 loop

I := I + 1;
Put(I);

end loop;
end Test;
unix% make
unix% ./main test.ada
SEQ

ASSIGNMENT_STMT(I)
INTEGER_VALUE(0)

WHILE_STMT
ISLT_OP

IDENTIFIER(I)
INTEGER_VALUE(10)

SEQ
ASSIGNMENT_STMT(I)

ADD_OP
IDENTIFIER(I)
INTEGER_VALUE(1)

PUT_STMT
IDENTIFIER(I)

This output represents the following abstract syntax tree.

I

Put

Identifier

I

I 1

Assignment

Add

Identifier Integer

I

0

I 10

Seq

While

Is_LT

Identifier Integer

Assignment

Integer Seq

