Great Theoretical Ideas
Assignment 9 Due: April 6, 1999

The program you will write for this assignment will be able to answer questions like these.

Question 1 How many four-stone necklaces can we build using rubies and diamonds
so that no two necklaces are symmetric? (Two necklaces are symmetric if we can
reach one through a sequence of rotations and flips of the other.)

Although there are 16 ways to choose stones for each of 4 locations, many of them
are equivalent; there are only 6 distinct necklaces. (See Figure 1.)

Question 2 Painting each face of a cube red or green, how many cubes can we paint
so that no two cubes are three-dimensional rotations of each other? (Think about
this one for a while; the answer is 10.)

Question 3 What if we allow 3 colors? (There are 57 colorings.) If we additionally
say two are symmetric if they are mirror images (that is, if swapping one opposite
pair of faces yields another), there are 56 distinct colorings.

Question 4 Consider a 2 x 2 x 2 Rubik’s Cube. We can twist a face of the cube,
or we can rotate the entire cube. Choosing one of 6 colors for each exterior face of
a small cube, how many colorings are there so that for any two colorings, we cannot
reach one from another through a series of twists and three-dimensional rotations?
(This problem is quite large; not even our best program has solved it.)

To generalize these problems and others (including many chemistry problems, like count-
ing isomers of a molecule), we need to formalize the notions of colorings and symmetries. Let
n be the number of locations (faces, beads, whatever) being colored and let k& be the number
of colors available. We can represent a coloring as a function ¢ : {1,...,n} — {1,... k}
assigning colors to locations.

To formalize symmetries, we use permutations. For example, we want to say that the
necklace ¢t = (; f g’ 111‘ (upper-right necklace of Figure 1) is symmetric to the necklace ¢’ =
G g :1)’ ;1) (lower-right) because we can rotate ¢ once counterclockwise to get t’. That is, ¢t and
t" are symmetric in this example because if we permute the colors of ¢ so that location 1 gets
the color t assigns to 2, location 2 gets the color ¢ assigns to 3, location 3 gets the color ¢
assigns to 4, and location 4 gets the color ¢ assigns to 1, then we get the color assignments
of t'. Thus we can represent this permutation of colors with the permutation II = (1 23 4).

jeljegegofeltofedbe
S FOPERIIRSS PEPE] Pe:

Figure 1: Ways to build a necklace.

it

e s
048 o'diie §iii o

Figure 2: Rotations as permutations.

Regarding Il as a function from {1,...,n} onto {l,...,n}, so that 1I(1) = 2, II(2) = 3,
II(3) = 4, and II(4) = 1, we can succinctly express that ¢ is symmetric to ¢’ because there
is a symmetry permutation II so that ¢ o Il = ¢’. (Here o represents function composition.)
It’s important to think of the permutations as permuting the colors of locations, not the
locations themselves.

Thus, to abstractly talk of symmetries, we can talk about a set of permutations. As
the previous paragraph discusses, (; :23 if
problem. Figure 2 illustrates all rotations of a necklace and their corresponding permutations.

If we want to say that all rotations are symmetric, then, we use the set of permutations

G- 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
N 123 4)°'\2341)/)'’\3412)/)'\ 4123 ’

These permutations represent the ways to rotate a necklace. If we also want to include

) is one symmetry permutation for the necklace

flipping the necklace, we add four more permutations to G.

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
43 2 1)\ 214 3)’\1 43 2)’\3 2114

(With or without flips, the answer is 6.) Notice that, for any “natural” notion of symmetry
(including all the questions asked at the beginning of this handout), the corresponding set
of permutations will be a group under composition. Also notice that, for any permutations
A and II and for any coloring ¢, t o (Ao 1l) is (t o A)o Il

Given a group of permutations G, two colorings ¢ and t' are symmetric (written ¢ ~ ¢')
if we can reach t’ from ¢ using some permutation of G — that is, if there is some permutation
A € (G so that t o A = t'. Convince yourself that ~ is an equivalence relation on colorings.

The general question, then, is the following.

Question A Given a collection of n elements and £ colors, and given a notion of
symmetry represented by a permutation group G, how many ways can we color the
elements with & colors so that no two ways are symmetric according to G?7

We could ask Question A even more succinctly: For n, k, and G, how many equivalence
classes does ~ have? Notice that we get different counting problems for different symmetry
groups (.

Your program will work with groups of permutations. These groups can be quite large;
a user shouldn’t have to type all the permutations of a group. A simpler way to describe

17|18
5 19|20

1/2]|3(4]|5|6]7]|8
1 2 3 4 9(10]11(12]13|14] 15|16
21|22
6 23|24

Figure 3: Numbering faces (Problems 1 and 2).

a group is to indicate a small set A of permutations and then to find all permutations we
can reach through repeated applications of permutations from A. You can convince yourself
that this is a subgroup; we call it the subgroup generated by A. (The items from A are
called generators.) For example, if A = {(; :2)) 2 11 , (}1 :2)) ;’ 11) }, then the subgroup generated
by A is

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 2 3 4 2 3 41 3 41 2 41 2 3

3 4 1 2 3 4 3 4 1 2 3 4
4321’2143 3 2 3 21 4

Problems

This assignment has 5 problems. The first 2 are written, the last 3 are programming.
All will be automatically graded. The following section (“About your program”) describes
administrative points about the assignment.

Problem 1 (5 points) What input would you use to ask Question 2 at the beginning
of this handout? Number the faces as in Figure 3 and place your answer in the file
cube.inin your handin directory using the format described in “About your program”
below. A full-credit answer will use as few generators as possible. (The check script
will not check your answer.)

Problem 2 (10 points) What input would you use for Question 47 Number the faces
as in Figure 3 and place your answer in the file rubik.in in your handin directory
using the format described in “About your program” below. A full-credit answer will
use as few generators as possible. (The check script will not check your answer.)

Problem 3 (20 points) The first type of request your program should handle is for
the subgroup generated by a set of permutations. To do this, you should complete
the following function in Enum.cc.

PermList* problem3(int n, PermList *gen);

This function takes n, the number of elements being colored, and gen, a list of gen-
erators. The function should compute and return all permutations in the subgroup
generated by the generators listed in gen.

The grading program always represents a permutation as an array of integers. For
example, the permutation (é ; i 11) is represented by the grading program as the array
{1,2,3,0}. (Subtracting 1 from each element is convenient for C.)

The grading on this question will be all-or-nothing. For credit, you should consis-
tently generate the correct answer in time at most 10 times benchmark.

Hint: Our implementation takes O(jmn) time, where j is the number of genera-

tors and m is the number of permutations in the generated subgroup.

Problem 4 (55 points) The second request type your program will encounter is

Question A.

int problem4(int n, int k, PermList *gen);

Besides n and gen as with problem3(), this function takes k£, the number of colors

available for use. The function should return the number of ways we can color the

elements so that no two are symmetric according to the subgroup generated by gen.
The grading on this problem is similar to the grading for Assignment 3. We will

give your program a total of 5 minutes to solve Problem-4 requests. Your score will

be

you

3
max {O,min {55,45 - 510g2 beni} - IO(wrong)} ,

chmark

where benchmark is the amount of time used to get through the last question your
program attempted in the 5 minutes. (Any of the first 6 questions that your program
fails to answer is counted as wrong.)

Although the grading scale is similar to that of Assignment 3, the benchmark is
not. To get full credit for this problem you will need to be more than 100 times faster
than benchmark! The benchmark uses an exhaustive-search technique; our current
best solution, which uses a different technique, is 200 times faster than benchmark.
The appendix to this assignment includes proofs to two lemmas that you may find
useful in developing the fastest possible solution.

Problem 5 (10 points) The final type of request your program will encounter
restricts the set of colorings to colorings with a; items colored the first color, a

items colored the second color,. .., a; items colored the kth color. For example, if we
ask how many necklaces of two rubies and two diamonds there are, the answer is 2
(Figure 1).

int problem5(int n, int k, PermList *gen, int *num_color);

As in Problem 4, we have n, k, and gen. The num_color array has k£ elements and
specifies how many of each color is available; the total number of colors available
will be exactly n. The function should return the number of ways to color n items
consistently with num_color so that no two ways are symmetric according to the
subgroup generated by gen.

For 7 points, your program should consistently compute the correct answer in
time at most 10 times benchmark. For full credit, the program should consistently
compute the correct answer in time at most 0.2 times benchmark. The benchmark is
quite fast; you are unlikely to receive credit unless you have a full-credit solution to

Problem 4.

About your program

To give the necklace problem to your program, we specify n, k, and G as follows.

4 4 2
1
2341
0

Respectively, this tells your program to answer Problem 4 of this assignment with n = 4,
k = 2, and G as the subgroup generated by {(; g i 11)} The line 1 indicates that we
use only one generator. The final 0 is a request to solve Problem 0, indicating that your
program should terminate. The input may include many requests; the program will continue
answering them until reaching a Problem-0 request.

If we wanted to allow flips in addition to rotations, we could add the permutation (i :23 g’ 11)

to the list of generators.

4 4 2
2
2341
4321
0

In your handin directory you will find several files. Your answers should appear only
in the files cube.in, rubik.in, and Enum.cc; anything appearing in other files will be ig-
nored. The other files are provided to help you concentrate on the primary issues; you
can ignore or use these as you want, but your program should be compatible with them.

cube.in your answer to Problem 1 should appear here

rubik.in your answer to Problem 2 should appear here

Enum.cc all of your code should appear in this single file

Enum.h prototypes for the functions in Enum.cc

Main.cc an implementation of main() that reads requests from the input file

and uses your code in Enum.cc to compute answers

PermList.{cc,h} implements a list of permutations with a connected hash table facili-
tating quick lookup within the list

workload a set of input problems for testing

Makefile compiles the program (see next paragraph)

(Neither check nor the grading program uses Main.cc; we provide it so that you can develop
and test code where the check program is not available.)

To compile your program, you can run gmake enum, which will use the main() function
in Main.cc to run your program. To run enum, direct to it an input file specifying a set
of problems to solve (e.g., ./enum < workload). The enum program should work on any
machine. If you are on Andrew Sun machines, you may prefer compiling your program using
gmake enumch. This will use a “checking” version of main() that checks your program’s
answers and reports performance relative to the benchmark. Like enum, to run enumch you
should direct a problem file (e.g., ./enumch < workload).

Once you have completed your program and copied your files into your handin directory,
you should run a final check on your program using the check program,

/afs/andrew/scs/cs/15251/bin/check

This will verify that you have turned in the correct files and will report an estimate of your
grade.

At no time should your program’s memory usage exceed 2 megabytes; if this occurs, then
the program will be considered to have crashed at this point. (Memory will probably not be
an issue.) You may reuse data computed for previous requests if you would like.

Appendix

In this appendix we state and prove two lemmas as a hint that you may find useful in
developing fast algorithms for Problems 4 and 5.

Lemma 1 Guwen n, k, and permutation group GG, we have our equivalence relation
~. Constder an equivalence class C, and define for any two colorings t,t' € C the set
Ai v to be the set of permutations that permute t into t', {1l € G : to Il =t'}. There
is @ number m so that for all t,t' € C, Ay has exactly m permutations.

Proof. Our first step is to show that, for any colorings ¢t and ¢’ from C', the number of
permutations mapping ¢ to itself is the same as the number of permutations mapping
t to t'; that is, |A;:| = |Arv|. We do this by setting up a bijective correspondence
between A;; and A;p. Since t ~ t', we can choose some permutation A so that
t oA =1. Our correspondence maps Il € A;; to [l o A. (Notice that [To A € A; 4
since (¢ is closed under composition and since to (Ilo A) = (toll)o A=to A =1")
This correspondence is one-to-one because if any two permutations II,II' € A;; are
mapped to the same place (Ilo A = II'o0 A) then they are the same (I = II'), since G
(as a group) has cancellation. This correspondence is onto because for any II' € A;
we can find a permutation II € A,;; so that Il o A = II'. Namely, we can solve for
II by multiplying both sides by A™" to get I = II' 0 A™'. This II' 0o A~ is in Ay,
because to (II'o A7) = (toIl') o A™' =t 0 A~ =¢.

For every pair of colorings t,t' € C', A;4 has exactly m = |G|/|C| permutations,
satisfying the theorem. This follows from two observations. First, every permutation
in G maps t to some coloring in C'. Second, for any t',t" € C, we have |A; | = |As]
(since the previous paragraph shows that both sides are equal to |A;4]). n

The second lemma involves cycle representations, a useful way to represent permuta-
tions. A cyclic permutation is a permutation that rotates a subset of the range {1,...,n}
and leaves the remainder of the range unchanged. Formally, a cyclic permutation II has
some sequence (ag a; -+ Gp—1) so that

(z) = A(i41) modn if = a; for some 2 € {0,...,n — 1}
RE if e #a;forallie{0,...,n—1}

We abbreviate such a permutation as (ag a; -+ a,—1). For example, (1 3 2) abbreviates the
123 4)

permutation I = (3 Lo

x II(z) reason

1 3 3 follows 1 in the sequence (1 3 2)

2 1 1 follows 2 in the sequence (wrap around)

3 2 2 follows 3 in the sequence

4 4 4 does not appear in the abbreviation, so it is unchanged

The cycle representation of a general permutation is a product (composition) of disjoint

cyclic permutations’ abbreviations.

example example as product of example’s
permutation disjoint cyclic permutations cycle rep.
(25411) (2547) 2311
(5712) (a511)°(1153) Be
o) Grane(iaan)(ia) e

Notice that if a permutation leaves an element fixed, then the cycle representation includes

this element as its own cycle, as in the third example of the table.

Lemma 2 Given Il € G, let ¢ be the number of disjoint cycles in I1’s cycle represen-
tation. There are k° colorings that 11 leaves t fized. That is, the number of colorings

t:A{L...;n} = A{L,...,k} so that t o Il =t is k°.

Proof. Note that for a coloring ¢, ¢ o Il shifts each item’s color once along the cycle in
which the item appears. If t does not color a cycle monochromatically, then ¢ o Il will
not be the same coloring as ¢, since the cycle’s colors shifted once within the cycle
will not be the same. On the other hand, if ¢ colors every cycle monochromatically,

then to Il will be the same coloring, since shifting the colors of a monochromatic cycle
does not alter its colors. Thus for each of the ¢ cycles we can choose one of k colors.

©1999, Carl Burch. May not distribute without permission.

7

