
Chapter 1

ML fundamentals

ML is arelatively new language,employing many modernlanguagedesignconcepts.If you’veprogrammed
before,you’ll find ML differentin two importantrespects.(And if youhaven’t programmedbefore,because
of thesedifferences,youwon’t beatmuchof a disadvantage.)

ML is a functional language. ML programsstrongly emphasizefunctionssimilar to mathematical
functions.Functionalprogrammingdoesnot includethenotionof statementsfound in Ada, C++, or Java.
Thewholenotionof statementis altogetherlost,replacedwith solelyfunctionsandexpressions.Thisproves
to bea radicallydifferentway of doingthings.And it works.

Also, wewill useaninteractive interpreter to write ourML programs.Thisprogramis calledStandard
ML of New Jersey, abbreviatedSML. To startSML, type“sml ” at theUnix prompt.

% sml
Standard ML of New Jersey, Version 110.0.7, September 28, 2000
val use = fn : string -> unit
-

Theminussignis theprompt,signalingthatSML is readyfor you to give it someML to interpret.

1.1 Identifiers

ML usesidentifiers to representvalues.An identifierhasa name,a type,anda value. In this respect,an
ML identifier is very similar to anAda variable.But in oneimportantrespectthey aredifferent: thevalue
of anML identifiernever changes. Thatis, whenML createsanidentifier, it givestheidentifieravalue,and
thatidentifieralwaysstandsfor thatvalue.

Let’s typesomethingvery simplefor SML to interpret.
- val freezing = 32;
val freezing = 32 : int

In this line, we have told SML to createa new identifier, namedfreezing , with a value of 32. The
val word is specialto ML anddesignatesthat you areaboutto createan identifier. After that comesthe
identifier’s name,andthenafter the equalssign is the valueto give it. A semicolonendsthe line, telling
SML to go ahead.

In this example,SML camebacksaying“val freezing = 32 : int .” SML’s responsesimply
confirmsthata new identifier freezing hasbeencreated,representingthevalue32, with a typeof int
(for integer).

An ML integeris completelyincomparableto its floating-pointequivalent.To designateafloating-point
numberto ML, youcanuseadecimalpoint.

c
�

2001,CarlBurch.All rightsreserved.

1

2 CHAPTER1. ML FUNDAMENTALS

- val real_freezing = 32.0;
val real_freezing = 32.0 : real

Note that whenSML confirmsthe creationof the identifier, it prints real to signify that this identifier
representsafloating-pointnumber.

If you simply write anexpressionin ML followedby a semicolon,theinterpreterwill assumethatyou
meantto createanidentifiernamedit with thatvalue.

- freezing + 5;
val it = 37 : int

In thisexample,wewroteaverysimpleexpressionsayingto add � to thevalueof theidentifierfreezing .
SML evaluatedthisexpression,determinedthattheanswerwas ��� , andhandledit exactlyasif wehadtyped
“val it = 37; ”

- val it = 37;
val it = 37 : int

There’s nothingspecialaboutthe it identifier, except for this implicit redefinitionof it every time you
write anexpression.

ML doesn’t prevent you from creatingnew identifierswith thesamenameasexisting identifiers. But
do not think of this aschangingan identifier’s value(a la Ada assignmentstatements):You arecreatinga
completelynew identifier, whosenamehappensto bethesameasanold one,andwhich thereforehidesthe
old identifierfrom futureuse.

- val freezing = 0.0;
val freezing = 0.0 : real
- freezing;
val it = 0.0 : real

In thisexample,wecreatedanew identifierfreezing with avalueof 0.0. (Noticehow thisnew identifier’s
type is real .) Thenwe wrote theexpressionfreezing , andwe found that this expressionevaluatesto
0.0.

1.2 Expressions

Basicallyeverythingin ML is eitheranexpressionor anidentifierdefinition. You canbuild simpleexpres-
sionsusingthefollowing rules.

� A constant(like 32 or 0.0) is anexpressionwhosevalueis whatthatconstantrepresents.

� An identifier(like freezing) is anexpressionwhosevalueis thevaluethatthatidentifierrepresents.

� A smallerexpressionmaybeenclosedin parentheses.

� Two smallerexpressionsmaybejoinedby abinary operator (like ‘+’, ‘ - ’, or ‘* ’).

� An expressionmay be precededby a unary operator. (For example,ML uses‘ ˜ ’ for negation:
“ ˜(1 + 3) ” representsthe integer ��� . The ML designerschoseto use‘ ˜ ’ for negationbecause
they wanteddifferentsymbolsfor negationandfor subtraction.)

ML includesmany operators,andit usesthealgebraicorderof operations.

� At thetop is thenegationoperator‘ ˜ ’.

1.3. FUNCTIONS 3

� Thencomethemultiplicationanddivision operators:‘* ’, ‘ / ’, ‘div ’, and‘mod’. (ML usesthe ‘ / ’
for dividing two realnumbers,andit uses‘div ’ for dividing two integer numbers(in whichcaseany
remainderis ignored).The‘mod’ operatorworkson two integersandits valueis theremainderwhen
thetwo integersaredivided.

� Below thisareaddition(‘+’) andsubtraction(‘ - ’).

Hereareexamplesof a few expressionsandtheir correspondingvalues.

2 + 3 * 5 	
�
˜(3.0 / 2.0 * 8.0) + 1.5 	�����
15 mod (3 + 4) 	

Sometimes,you’ll accidentallywrite anexpressionthathasa typeerrorof somesort. SML usesinim-
itabletechspeakfor describingtheseerrors;it takessomepracticeto beableto decodethemessages.

- 2 * 1.5;
stdIn:6.1-6.8 Error: operator and operand don’t agree [literal]

operator domain: int * int
operand: int * real
in expression:

2 * 1.5

Thephrase“operatorandoperanddon’t agree”is anindicatorthatyou’re lookingata typeerror. ThenSML
saysthatit expectedtwo integers(“operatordomain”is aphrasemeaning“expected”),andit saw aninteger
anda real (it usesthe phrase“operand” to indicatewhat it saw). The problemhereis that we’re trying
to multiply an integer by a real,andmultiplicationcanonly handleeithertwo integersor two reals. (The
interpretertookyou to meanto multiply two int s,sincetheleft-handsideof themultiplicationis anint .)

1.3 Functions

With whatwe’veseensofar, ML is justaglorifiedcalculator. To doany programmedcomputation,weneed
the notion of a function. Functionsareintegral to ML — so important,in fact, that ML is classifiedasa
functionallanguage.

Eachfunction takesasan input somevaluecalleda parameter or an argument. Somefunctionswill
take severalparameters.Thenthefunctiondoessomecomputationto computeits output,calledits return
value. Theprocessof computingthereturnvaluecouldpossiblybeacomplex process.

1.3.1 Using functions

To useafunction,youcanjustwrite thefunctionnamefollowedby thevalueof its parameter. For example,
built into ML is a function namedMath.sqrt . This function takes a real numberasa parameterand
returnsa realnumber(whichapproximatesthesquarerootof its parameter).

Let’s saywewantto usethis functionto compute� � .
- Math.sqrt 5.0;
val it = 2.2360679775 : real

In theorderof operations,functionapplicationcomessecond,justbelow negationandabove themulti-
plicationanddivisionoperators.Considerthefollowing example.

- Math.sqrt 25.0 * 25.0

4 CHAPTER1. ML FUNDAMENTALS

Becausefunctionapplicationcomesabovemultiplicationin theorder, thefirst thing thathappenshereis the
call to Math.sqrt , andthentheresultgetsmultiplied by 25.0. Sotheinterpreterrespondswith 	���� (not��� , asit would if it did themultiplicationfirst andthenthesquareroot).

val it = 125.0 : real

ML includesa variety of built-in functionsfor you to usein building your own functions. We can’t
possiblylist themall yet — we needto understandML better— but herearea few.

real int -> real returnsthefloating-pointequivalentof its integerargument
round real -> int returnsthenearestintegerto its floating-pointargument
Math.sqrt real -> real returnsthesquarerootof its argument
Math.exp real -> real returns��� for anargument�

Noticethatthefirst two give youawayof convertingbetweenintegersandfloating-pointnumbers.

1.3.2 Defining functions

Definingfunctionsis relatively simple— not toodifferentfrom definingmathematicalfunctions.
- fun tempConv celsius = 9 * celsius div 5 + 32;
val tempConv = fn : int -> int;

Hereweareusingthewordfun tosignalthatwearedefiningafunction.Thenamefollowing it, tempConv ,
is thenameof thefunction,andthenamefollowing it, celsius , is a placeholderfor its parametervalue.
Following theequalsignis anexpressionsayinghow to computethereturnvalueof thefunctionfor agiven
celsius .

Now if want to usethe function, we type the function namefollowed by what we want it to usefor
celsius .

- tempConv 100;
val it = 212 : int

Herewe passedthenumber 	���� astempConv ’sparameter. Thefunctioncomputes9 * 100 div 5 +
32 — which is ��	�� . This is thevalueof theexpressiontempConv 100 .

Look againathow SML respondedwhenwe first definedthe tempConv function.

val tempConv = fn : int -> int;

It is sayingthattheuserhasdefinedanew identifier, calledtempConv , whosevalueis a function. (Rather
thanattemptto representthe functionon thescreen,theSML interpreterjust displaystheword fn .) The
typeof the tempConv identifieris int -> int — it’s a functionfrom integersto integers.

In otherwords,SML’sresponseindicatesthatdefiningfunctionsis really justadifferentwayof defining
anidentifier. This in itself is interesting.But there’s anotherinterestingpoint arisingfrom SML’s response:
How did it determinethatcelsius would representaninteger?

1.3.3 Type inference

Theanswer:It assumedit! ML hasauniquefeaturecalledtype inference: TheML interpreterwill analyze
a function to determinewhat type you probablymeant,and it will go with that assumption.Usually —
surprisinglyoften— it will assumecorrectly. In this caseit saw thatwe weremultiplying � by celsius :
since � is aninteger, andyoucanonly multiply anintegerby aninteger, it infersthatcelsius mustbean
integer. Similarly, becauseit addstwo integersto get the result,andthesumof two integersis an integer,
it concludesthat the returntype mustbe an integer. This isn’t so impressive, but we will seesomemore
amazingexamples.

Of course,sometimestheinterpreterwill assumewrongly. Considerthefollowing example.

1.3. FUNCTIONS 5

- fun sq x = x * x;
val sq = fn : int -> int

In this case,it is ambiguouswhetherwe wantedsq to work with integersor real numbers— the only
thingwe did with x wasto multiply it with itself, andeitherinterpretationis consistent.TheML interpreter
assumedint . If weactuallywantedx to bereal , wehavetwo options:Thelow-techversionis to multiply
by 	���� .

- fun sq x = 1.0 * x * x;

In theotheroption,we includetypeinformationin thefunctiondefinition.

- fun sq x : real = x * x;

In this case,we aresayingthatsq returnsa real. Sincewe canonly geta realout of a multiplicationif we
aremultiplying a realby a real,theinterpreterinfersthatx mustbea realalso.

1.3.4 Multiple parameters

The functionswe have seenso far dealonly with singleparameters.Oftenyou wanta function that takes
moreparameters.For example,saywewantafunctionthattakesfour parametersrepresentingthe � - and � -
coordinatesof two points �����! "���
and ���%$� "��$&# , andwe wantto computethedistancebetweenthem.Recall
thatthedistanceis ' �����(�)�%$*#,+.-/�����(�0��$*#,+ . We’ll useoursq functionin writing theML for this.

- fun dist x0 y0 x1 y1 = Math.sqrt (sq (x0 - x1) + sq (y0 - y1));
val dist = fn : real -> real -> real -> real -> real

The ML interpreterrespondsthat we have defineda function dist that takesfour real parametersand
returnsa real .

Now if we want to usethe distancefunction,we canjust list the parameters,oneafter theother. ML
will associatethevalueswith theparameterslistedin thefunctiondefinitionaccordingto theorderthey are
listed.

- dist 0.0 0.0 3.0 4.0;
val it = 5.0 : real

Behindthescenes,theinterpretercomputedx0 - x1 (whichwas �1����) andsquaredthisby passing�1����
to the sq function we just defined(����). Thenit computedy0 - y1 (which is �(�2���) andcomputedits
sq(�3���). It addedthesetogether, andpassedtheresult(������4# to thebuilt-in functionMath.sqrt , which
computedthesquareroot (���� , thevaluereturnedby dist in thisexample).

Here’s a moresystematicrepresentationof how the interpreterreasons.We’ll call this a derivation of
thefunction’s value.

dist 0.0 0.0 3.0 4.0
= Math.sqrt (sq (0.0 - 3.0) + sq (0.0 - 4.0))
= Math.sqrt (sq ˜3.0 + sq (0.0 - 4.0))
= Math.sqrt (˜3.0 * ˜3.0 + sq (0.0 - 4.0))
= Math.sqrt (9.0 + sq (0.0 - 4.0))
= Math.sqrt (9.0 + sq ˜4.0)
= Math.sqrt (9.0 + ˜4.0 * ˜4.0)
= Math.sqrt (9.0 + 16.0)
= Math.sqrt 25.0
= 5.0

Be sureto stepthroughtheabove sequenceyourself— understandingtheabove sequenceis importantfor
later.

6 CHAPTER1. ML FUNDAMENTALS

1.4 The Booleantype

ML providesa varietyof types.Sofar we have just seentwo: int andreal . But next on our list arethe
Booleanvalues,namedbool by ML. Thesearefor valuesthatcanbeonly trueor false.

ML hasa few additionaloperatorsfor dealingwith Booleanvalues.

1. Thecomparisonoperatorsarejustbelow additionandsubtractionin theevaluationorder:equals(‘=’),
not-equals(‘<>’), less-than(‘<’), less-than-or-equals (‘<=’), greater-than(‘>’), andgreater-than-or-
equals(‘>=’). Thesetake two numbersandreturnaBooleanvalue.

2. Below this, therearethe two operatorsandalso andorelse , for combiningBooleanvaluesto-
getherusingtheAND or OR of Booleanlogic.

An observantreadershouldbewondering:If wehaveAND andORfrom Booleanlogic, why notNOT?
The answeris that ML hasthis too, it’s just not a specialoperator. Oneof the built-in functionsis not ,
which takesa bool parameterandreturnsa bool — namely, theoppositeof its parameter. Noticewhat
this implies in termsof theorderof operations:functionsarejust above multiplicationin theorder, andso
theBooleanNOT is above thecomparisonoperators.This is somewhatcounterintuitive.

Wecanusethesein definingidentifiersof typebool .
- val flag = not (5 > 8);
val it = true : bool

1.5 if expressions

We’ll useBooleanexpressionsmostoftenin if expressions.
- val abs x = if x >= 0.0 then x else ˜x;
val abs = fn : real -> real

Herewe have defineda functioncalledabs , which takesa parameterx andreturnsits absolutevalue— �
if � is at least����� , and �(� if not.

A warningaboutusing if : Every time you usean if , you must have an else ! This is becausethe
ML if is anexpression, andexpressionsmustalwayshave avaluein all circumstances.

An if is anexpressionlike any other;you canput it anywhereyoucanputanotherexpression.
- fun len x y = (if x < y then ˜1 else 1) * (x - y);
val len = fn : int -> int -> int
- len 5 8;
val it = 3 : int

In this example,the if computes�5	 (since�768�), andso len returns�5	:9���;�0�<#>=?�5	:9��@�A=/� .
Often,you’ll wantto putan if expressioninsidetheelse clauseof another.
- fun gradePoint pts =
= if pts >= 90.0 then 4
= else if pts >= 80.0 then 3
= else if pts >= 70.0 then 2
= else if pts >= 60.0 then 1
= else 0;
val gradePoint = fn : real -> int

This exampleintroducesnothingnew aboutif : We just placeda regular if in theelse of anotherif ,
which wasitself in theelse of anotherif , which wasitself in theelse of anotherif . (Theequalsigns
on the left sidearethepromptsSML printswhenit is waiting for you to typemore,becauseit knows you
haven’t finishedsayingwhatyouwantedto sayyet. They’re notpartof theML function.)

Chapter 2

Recursion

At thispoint,wehaveawayof having ML computesimpleexpressions.But complex operationsinvolvedo-
ing essentiallythesamething repeatedly. In ML weaccomplishthisby usingrecursion— whichbasically
meanswe have a functionuseitself.

2.1 Recursionat work

Recursionseemscircularat first — how coulda self-referentialfunctionmeananything useful?— but in
controlledcircumstancesit cando something.

Considerthefollowing functionto computethefactorialof B , BDC (thatis, 	(9
�E9
�F9�9�9�9494��BG�8	
#H9�B).

- fun fact n = if n <= 1 then 1 else n * fact (n - 1);
val fact = fn : int -> int

This is recursive, becausein somecircumstances(namely, whenn exceeds), it usesitself to computeits
own value.

Let’s seehow theML interpreterwouldcomputefact 4.

fact 4 = 4 * fact (4 - 1)
= 4 * fact 3
= 4 * (3 * fact (3 - 1))
= 4 * (3 * fact 2)
= 4 * (3 * (2 * fact (2 - 1)))
= 4 * (3 * (2 * fact 1))
= 4 * (3 * (2 * 1))
= 4 * (3 * 2)
= 4 * 6
= 24

We’ll call this techniquefor representinghow arecursive functionevaluatesits valueaderivation.

2.2 The inductive method

We’ll seetwo generalstructuresfor recursive programs. The first is the inductivemethod, which is the
techniqueyou shouldconsiderfirst. If it lookslike theinductive methoddoesn’t work, thenyou canmove
ontothinking aboutthehelper-functionmethodof thenext section.

c
�

2001,CarlBurch.All rightsreserved.

7

8 CHAPTER2. RECURSION

2.2.1 Writing a recursive program

Our secondexampleis really not too different,but we’ll go throughthedesignprocessmorecarefully: We
wantto write a functionthat takesaninteger B asa parameterandcomputesthesumof thesquaresfrom 	
to B (that is, 	 + -I� + -J��K:-/9�9�94-L��B7�J	
+ -8B +). Beforeyou go on, think for a momentabouthow you
woulddo thisusingML.

Theprogramwe write will have theform

- fun sumSquares n = ...

Thethoughtprocessyoucangothroughto write thisprogramis thefollowing: If I’m lookingataparticularB (say, BM=?	��), andI knew thefunction’s valuefor all smallervaluesof B (soI know thesumof thesquares
up to 	 + , . . . up to N + , andup to � +), how would thathelpmecomputethefunctionvaluefor B ?

Whatyou shouldseeis that thesumof thesquaresup to 	�� + is of coursethesumof thesquaresup to� + , plus 	�� + . In this case,if I know the valueof sumSquares (n - 1) , it is not too difficult to find
thevalueof sumSquares n — namely, I just needto add B + to it. This leadsto the following first-cut
solution.

- fun sumSquares n = sumSquares (n - 1) + n * n;

But this functionhasa majorproblem. What is it? It mayhelp if you try to do a derivation to seehow it
computessumSquares 3.

Let’s try this.
sumSquares 3 = sumSquares (3 - 1) + 3 * 3

= sumSquares 2 + 3 * 3
= (sumSquares (2 - 1) + 2 * 2) + 3 * 3
= (sumSquares 1 + 2 * 2) + 3 * 3
= ((sumSquares (1 - 1) + 1 * 1) + 2 * 2) + 3 * 3
= ((sumSquares 0 + 1 * 1) + 2 * 2) + 3 * 3
= (((sumSquares (0 - 1) + 0 * 0) + 1 * 1) + 2 * 2) + 3 * 3
= (((sumSquares ˜1 + 0 * 0) + 1 * 1) + 2 * 2) + 3 * 3
= ((((sumSquares (˜1 - 1) + ˜1 * ˜1) + 0 * 0) + 1 * 1) + 2 * 2) + 3 * 3
= ((((sumSquares ˜2 + ˜1 * ˜1) + 0 * 0) + 1 * 1) + 2 * 2) + 3 * 3

It’ ll never stop! This is called infinite recursion. Any time it occurs,it’s an error, becauseit meansthe
programnever computesananswer— andof coursea nonexistentansweris never correct. (For thesame
reason,on multiple choicequestionswith no penaltiesfor wronganswers,you shouldalwaysguess.)How
canwe fix this?

In thiscase,what’s happeningis thatwe’re missingabasecase. For a recursive function,abasecaseis
a situationwherewe don’t make a recursive call to a function. Every recursive functionmusthave at least
onebasecase— arecursive functionwithout any basecasesmustinfinitely recurseno matterwhat.

In our first-cutsolution,thereis no basecase— in all situationswe make a recursive call. We needa
basecase.To determineyourbasecase,consider:Whatis thesimplestpossiblecasefor thefunction?That
is, for whatcouldyougive animmediateanswerwithout any furtherthinking?

For fact , thesimplestcase— andthebasecasein ourdefinition— waswhen B wasatmost 	 . In that
case,we said,theanswerwasaflat 	 : no recursionneeded.

For this problem,too, the simplestcaseis whenthe parameterB is 	 . We canimmediatelysay, then,
that theansweris 	 , without any consideration.O Incorporatingthis basecaseusingif givesusa working
solution.P

You might argue(andI would) thatactually thesimplestcaseis when QSRUT , in which casetheansweris V . But this involves
arguingthatif I addnonumberstogether, I get V , which is confusing.

2.2. THE INDUCTIVE METHOD 9

- fun sumSquares n = if n = 1 then 1 else sumSquares (n - 1) + n * n;
val sumSquares = fn : int -> int

Thus,therearetwo majorquestionsyoushouldaskyourselfwhenwriting arecursive function.Thefirst
is: Whatparametervalueis themosttrivial case?Thiswill bethebasecasefor yourrecursive function.The
secondquestionyou shouldask: How would knowing the functionvaluesfor smallerparametershelpme
computethefunctionvaluefor a givenvalue?

Taken together, thesetwo questionsconstitutewhat I will call the inductive technique for building a
recursive function. The inductive techniquewill not alwayswork — in the next chapter, we’ll seesome
problemswhereit doesn’t, andhow we canwrite programsto solve them. But any time recursionseems
necessary, youshouldfirst try theinductive technique,andif thatfails youcango on to trying otherthings.

2.2.2 Multiply-r ecursive functions

The Fibonacci numbers are the sequenceof numbers	� �	� W� W� W� WN �	�� ������ : Eachnumberis the sumof
theprecedingtwo in thesequence.Fibonaccinumbersturn up in sunflowers,pinecones,andotherequally
usefulplaces. We want to write a function fib that takesan integer B andcomputesthe B th Fibonacci
number.

Employing the inductive method,we askourselves: What is the simplestcase?In this example,the
trivial case— onerequiringnocomputationwhatever— is for B7=?	 , whentheansweris 	 . In thisexample,
there’s actuallyanothertrivial casefor usto handle:B7=/� . This case,also,requiresno computation.

And the secondquestion: If we’re trying to computethe B th Fibonaccinumber, and we know the
Fibonaccinumbersfor XY6ZB , how canwedo it? In thiscase,ourFibonaccinumberdefinitiongivesit away:
We’ll addthe ��BG�8	
st Fibonacciwith the ��BG�[��# nd Fibonacci.

Puttingthesetwo answerstogether, here’s our function.

- fun fib n = if n = 1 then 1
= else if n = 2 then 1
= else fib (n - 1) + fib (n - 2);
val fib = fn : int -> int

This functionis interestingbecauseit callsitself twice in orderto computeits own value.
How would theinterpretercomputefib 4? Here’s thederivation.

fib 4 = fib (4 - 1) + fib (4 - 2)
= fib 3 + fib (4 - 2)
= (fib (3 - 1) + fib (3 - 2)) + fib (4 - 2)
= (fib 2 + fib (3 - 2)) + fib (4 - 2)
= (1 + fib (3 - 2)) + fib (4 - 2)
= (1 + fib 1) + fib (4 - 2)
= (1 + 1) + fib (4 - 2)
= 2 + fib (4 - 2)
= 2 + fib 2
= 2 + 1
= 3

There’sanotherrepresentationof a recursive function’s computationthatis alsouseful,calledtherecursion
tree.

fib 3

fib 1fib 2

fib 4

fib 2

10 CHAPTER2. RECURSION

fib 4

fib 2fib 3

fib 1fib 2fib 3

fib 1fib 2

fib 3

fib 1fib 2

fib 4

fib 2

fib 5

fib 6

Figure2.1: Recursiontreefor fib 6.

In arecursiontree,eachnoderepresentsacall to fib . Connectedbelow agivennodearetherecursivecalls
madeby thatnodein theprocessof computingits returnvalue.For example,below fib 4, we have fib
3 andfib 2, becausein orderto computefib 4, we hadto alsocomputefib 3 andfib 2 (andthen
we happenedto addtheir returnvalues).Figure2.1containstherecursiontreefor computingfib 6.

For singly-recursive functionslike fact , therecursiontreeisn’t very interesting.Hereis therecursion
treefor fact 4.

fact 4

fact 3

fact 2

fact 1

Derivationsandrecursiontreesareboth usefulfor visualizinghow a recursive programworks. Since
recursiontreesaremoregraphicalandconcise,they areoftenmoreuseful.

2.3 The helper-function method

Thesecondtechniquefor writing recursive functionsis moreof acatch-alltechniquefor applicationswhere
theinductivemethoddoesn’t work. Sometimesit won’t, becausesometimestherejustwon’t beananswerto
thesecondquestionof how knowing thevaluesfor lesserparameterswould helpwith computingthevalue
for agivensetof parameters.

2.3.1 Using let –in –end

Beforewe look at helperfunctionsin thecontext of recursion,we needto studylet expressions.A let
expressiongivesyouthecapabilityto temporarilydefineanidentifierfor thedurationof anexpression.This
is frequentlyamatterof convenience.

fun distanceFallen t =
let val g = 9.78;
in 0.5 * g * t * t
end;

(This functioncomputeshow far anobjectwill fall towardsEarthin a certainnumberof seconds.)We can
have any sequenceof identifierandfunctiondefinitionsbetweenlet and in ; betweenin andend is an
expressionthatcomputesthevalueof theoverall let expression.

2.3. THE HELPER-FUNCTIONMETHOD 11

As with all of our programs,ML doesnot careaboutline breaksandspaces— the line breaksarefor
theconvenienceof thehumanreader, notbecausethecomputerneedsthemto bethere.

In thisexample,betweenlet andin we defineanew identifierg, with a valueof ��\��N . Thenbetween
in andend we indicatehow to computethereturnvalue— in this case,�]	
^���#`_ba + . Whatwe have doneis
to defineg to make thereturnvalueexpressiona little cleaner.

Thisdefinitionof g lastsonly for thedurationof the let expression.

- val g = 42;
val g = 42 : int
- distance_fallen 1.0;
val it = 4.89 : real
- g;
val it = 42 : int

In thisexample,eventhoughg wasdefinedin the let expressionwithin distanceFallen , thisdid not
affect theg we haddefinedoutsidethe let expression.

Youcanputseveraldefinitionsbetweenlet andin whenit is convenient.Thefollowing computesthe
distancetraveledby a projectilefired at a given velocity andangle. (That is, it doesif my physicshasn’t
rustedout.)

fun distance vel angle =
let

val g = 9.78;
val horz_vel = vel * Math.cos angle;
val vert_vel = vel * Math.sin angle;
val time_aloft = 2.0 * vert_vel / g;

in
time_aloft * horz_vel

end;

(Notice that our definition of time aloft usesvaluesdefinedearlier in the let expression.) By us-
ing let , we canbreakthe computationinto moremanageablepieces. This definition is mucheasierto
understandthantheequivalentfunctionthatdoesn’t uselet

fun distance vel angle =
(2.0 * vel * Math.sin angle / 9.78) * (vel * Math.cos angle);

You canplaceany numberof identifier definitionsbetweenlet andend . Functiondefinitionscan
alsoappearhere. (After all, we’ve alreadyseenthatML really thinksof a functiondefinitionasa slightly
differentform of identifierdefinition.) In thehelper-functionmethodfor constructinga recursive function,
in fact,we’ll uselet to definesubfunctions.

2.3.2 Computing primality

Considerthefollowing problem:Wewantto developafunctionthattakesanint asaparameterandreturns
abool indicatingwhetherthegivenintegeris primeor not.

The inductive methoddoesn’t help here. If I want to know whether 	c�4� is prime, telling me which
numbersbefore 	c�4� areprime isn’t extremelyhelpful. To determineprimality, I really needto try several
numbersout, to seeif any divide into 	c�4� .

What we’ll do is to definea different function within a let . This helperfunction will exist solely
to iteratethrougha sequenceof numbersto seewhetherany divide into 	c�4� (or whatever the parameter
happensto be).Here’s thefunction.

12 CHAPTER2. RECURSION

fun isPrime num =
let

fun testFactor i =
if i * i > num then true
else if num mod i = 0 then false
else testFactor (i + 1);

in
testFactor 2

end;

ThetestFactor helperfunctiontakesaparameteri onwhichwe’recurrentlyworking,andseeswhether
we’ve passed� dbe4f yet. If we have, thenwe’ve testedall thepossibilitieswith no successandsowe know
num mustbe prime andso we return true . If we haven’t, we seewhetherthis i dividesinto num. If it
does,thenwe know num isn’t prime andso we return false . If neitherof theseapply, thenwe make a
recursive call to testFactor with theparameteri beingonemorethanbefore.

Let’s doaderivationto seehow this worksfor isPrime 77 .
isPrime 77 = testFactor 2

= testFactor 3
= testFactor 4
= testFactor 5
= testFactor 6
= testFactor 7
= false

In this example,testFactor continuedmakingrecursive callsuntil it reached� , at which point it found
thatnummod i waszero,andsoit returnedfalse .

2.3.3 Helper-function techniquedefined

This is thehelper-functiontechnique:Theinductive methoddidn’t work, becausewe really needto referto
theparameterin theprocessof determiningtheanswer. (In this case,we really neededto try dividing the
isPrime parameterby severalpossibilities.)Sowedefineahelperfunctioninsidea let expressionto go
throughtherepetitionneededto accomplishthetaskrequired.

Essentially, the helper-function techniquegivesa way of translatinga loop (a la imperative program-
ming) into a recursive function. In thecaseof primality testing,we might write an imperative programas
follows.

i := 2;
loop

if i * i > num then
return true;

elsif num mod i = 0 then
return false;

else
i := i + 1;

end if;
end loop;

We translatedthis into a helperfunctionusingthefollowing technique.Thehelperfunctioncorrespondsto
the loop of this program.The loop usesa singlevariablei in its processing,soour helperfunctionhasa
singleparameteri . Becausewe initialize i to be2 beforeenteringthe loop, we usetestFactor 2 to
enterthe helperfunction (in the in part of the let expression).And the helperfunction is a systematic
translationof thebodyof the loop: If the loop continuesfor anotheriteration,this translatesto a recursive
call with the updatedparameter/variables. If the loop exits, then this correspondsto a basecasefor the
helperfunction’s recursion.

2.3. THE HELPER-FUNCTIONMETHOD 13

Whenthe inductive techniqueis feasible,it is preferableto thehelper-function technique,asit is typi-
cally easierto understandandmorein line with thephilosophyof functionalprogramming.If you arean
inveterateimperative programmer, you mayinitially have difficulty with theinductive technique,but you’ll
bea betterprogrammer(evena betterimperative programmer)for understandingit. Don’t usethehelper-
functiontechniqueasacrutchfor simulatingimperative programsin a functionalprogramminglanguage.

On the other hand, the similarity betweenloops and helper functions leadsto an interestingresult:
Anything you cando with animperative programminglanguagecanalsobedonein a functionallanguage.
Proving this involvesshowing a techniquethattakesanimperative programandsystematicallytranslatesit
into afunctionalprogram.Theresultingprogramwon’t bebeautiful— andit certainlywon’t bein line with
thefunctionalprogrammingphilosophy. But thehelper-functiontechniqueis theessentialingredientto this
proof.

2.3.4 Computing a square root

Let’s look at anotherexample:computingthesquareroot of a number� . We’ve alreadyseenthat there’s a
built-in functionMath.sqrt thataccomplishesthis,but let’s seehow we might build our own functionto
do asimilar thing.

We’ll accomplishthis usingbinary search: We’ll startwith a wide rangewherethesquareroot might
lie, andwe’ll successively halve it until it is very narrow. To narrow the range,we’ll choosethe middle
numberin therangeanddeterminewhetherit lies above or below thesquareroot by comparingits square
to � .

This techniquecan’t be codedusing the inductive technique,becauseit requiresin the processinga
referenceto � (to determineon whichsideof thesquareroot themiddlenumberlies). Sowe’ll have to use
thehelper-functionmethod.

In this example,thehelperfunctionwill have twoparameters,representingthelower andupperbounds
of thecurrentrange.

fun squareRoot x =
let

fun binarySearch low high =
let

val m = (low + high) / 2.0;
in

if m * m > x + 0.0001 then binarySearch low m
else if m * m < x - 0.0001 then binarySearch m high
else m

end;
in

binarySearch 0.0 x
end;

Within thehelperfunction,wecomputethemiddlenumbermbetweentheparameterslow andhigh . Then
we seeif g + is too muchmorethan � . If it is, we make a recursive call to searchin the lower half of the
range.If it is too muchlessthan � , we make a recursive call to theupperhalf of therange.And otherwise
(if g + is very closeto �), we returnthenumberg .

2.3.5 Fibonaccisrevisited

Let’s look atanalternative implementationof Fibonaccinumbercomputation.If youlook atFigure2.1,you
maynoticesomethingpeculiar:In thecourseof computingfib 6, wecomputedfib 3 threetimes.This
is quiteawaste.

14 CHAPTER2. RECURSION

In fact, if you think abouthow fib works, to computefib n, it adds 	 to itself fib n times: the
returnvaluesfor a leaf of thetree(that is, a basecase)is 	 , while thereturnvaluefor a non-leafis just the
sumof thereturnvaluesfor its two children.Sothereturnvalueof eachnodeis just a countof thenumber
of leavesdescendedfrom thatnode.

This is quiteslow: The B th Fibonaccinumber, it turnsout, is quitecloseto 	���3�	�N!hi^�� � . (Here, 	���3�	�N is
actuallythegoldenratio, �]	�-j� ��#"^�� .) Thespeedof thisprogramisproportionalto this,soit hasexponential
growth. In fact,I timedourearlierdefinitionof fib programon my computerandfoundthefollowing.

fib 30 took ���k	�	�� seconds
fib 35 took 	�����N�� seconds
fib 40 took 	c�2��N���	 seconds
fib 60 took � years,	 month, 	����� days

(I’m justguessingon thatlastone;I didn’t actuallywait that long.)
There’s anotheralgorithmfor computingFibonaccinumbers,following theway you might actuallylist

them: Work from thebottomandgo upwards.That is, compute� by addingtheprevious two Fibonaccis;
thencompute� ; then � ; then N , 	�� , ��	 , etc. The inductive techniquewon’t leadyou to this algorithm,but
you canusethehelper-function techniqueto write a functionusingthis algorithm. In this helperfunction,
we’ll usethreeparameters,indicatingwhichFibonacciwe’re currentlyon,whatthatFibonacciis, andwhat
thepreviousFibonacciis.

fun fastFib n =
let

fun ithFib i this prev : real =
if i >= n then this else ithFib (i + 1) (this + prev) this;

in
ithFib 2 1 1

end;

Herewe’resayingthatif we’ve reachedthedesiredFibonacci,thehelperfunctioncanjust returnthecurrent
Fibonacci.Otherwise,we go to the next Fibonacciby makinga recursive call for thenext numberof the
sequence(thatis, this + prev), wherethis is theFibonacciprecedingit.

Thetimingsfor this programaremuchmorereasonable.

fastFib 30 took ���\��� milliseconds
fastFib 35 took ����N�N milliseconds
fastFib 40 took ������� milliseconds
fastFib 60 took 	��l�4� milliseconds

As you cansee,thegrowth of fastFib ’s runningtime is linear asopposedto fib ’sexponentialgrowth.
With fastFib , computing� moreFibonaccistakesanadditional ����� milliseconds,whereasfib takes 	�	
timesmoretime to accomplishthesamething.

Chapter 3

Mor e about ML functions

Eventuallywe’ll getinto workingwith morecomplex datathanjustnumbersandBooleans,but first weneed
to revisit functionsandlearnmoredetailsabouthow functionswork in ML. We glossedover detailsabout
functionsbefore,but they’re soimportantto ML programmingthatwereallyneedto understandthemto be
ML masters.

3.1 Functions asparameters

In ML, functionsare treatedon the samelevel as raw data. What this meansis that you canwork with
functionsin the sameway you can work with other typesof data. For example,a function might take
a function asa parameter, or it might computea different function. For example,considerthe following
functionthattakesa functionandscalesit by aconstant.

- fun scaleFunction func factor =
= let
= fun funcScaled x = factor * func x;
= in
= funcScaled
= end;
val scaleFunction = fn : (int -> int) -> int -> (int -> int)

This functiontakestwo parameters:a function func from integersto integers,andaninteger factor . It
computesanew functionfuncScaled (a functionfrom integersto integers)andreturnsthisnew function.

Now if we have a functionof somesort, like �!� + -m� , andwe wantto scaleit by a factorof � , we can
call scaleFunction to accomplishthis.

- fun example x = 3 * x * x + 5;
val example = fn : int -> int
- val scaled = scaleFunction example 2;
val scaled = fn : int -> int
- scaled 1;
val it = 16 : int

Herewedefinethevaluescaled to bewhatscaleFunction returns.SincescaleFunction returns
a functionfrom integersto integers,scaled is this functionfrom integersto integers.In this example,in
fact, it is twice theexample function: scaled computes3!� + -n	�� . Now given thenumber 	 , scaled
returns3E9�	 + -o	��p=?	�3 .

c
�

2001,CarlBurch.All rightsreserved.

15

16 CHAPTER3. MOREABOUT ML FUNCTIONS

3.2 Multiple parametersrevisited

Recallwhenwedefineddist , a functionthattakesfour parameters.
- fun dist x0 y0 x1 y1 = Math.sqrt (sq (x0 - x1) + sq (y0 - y1));
val dist = fn : real -> real -> real -> real -> real

We glossedover the responseof the interpreterherewithout really thinking aboutit. Hidden in it is an
interestingtidbit abouthow ML works.Theresponsesaysthatdist is a functionthattakesasinglereal
asaparameter, andit returnsa real -> real -> real -> real . Of course,this is itself a function
takinga real asa parameterandreturninga real -> real -> real , which is a function taking a
real asa parameterandreturninga real -> real , which is a functiontakinga real asa parameter
andreturninga real .

ML really doesn’t have a capacityfor storingfunctionsthat take more thanoneparameterat a time,
becauseit doesn’t needit. Instead,it remembersa multiple-parameterfunction asbeinga function that
takesthefirst parameterandcomputesanotherfunctionthattakesthesecondparameterandreturnsavalue.

Usually, this doesn’t make any difference— andyou canwrite perfectlyreasonableprogramswithout
understandingthisatall (which is why we glossedover it before).But this factcanleadto someinteresting
results.For example,thefollowing wouldbea completelylegitimatething to do in ML.

- val dist_00 = dist 0.0 0.0;
val dist_00 = fn : real -> real -> real

Whatwehavedonehereis to createanew identifier, representingafunction— namely, thefunctionreturned
by passing����� into dist andthen ����� into thatreturnvalue.Thisgivesusa real -> real -> real ,
whichwe canusesubsequently.

- dist_00 3.0 4.0;
val it = 5.0 : real
- dist_00 12.0 5.0;
val it = 13.0 : real

3.3 Anonymousfunctions

Sincefunctionsaresoprevalentin ML, it’susefulto beableto definefunctionswithouthaving to gothrough
the botherof namingthem. For example,whenwe usedscaleFunction before,we hadto nameour
examplefunction (we choseexample), even thoughwe really didn’t want to refer to the function more
thanonce.

ML providesa way for you to describea functionwithout giving it a name.Thefollowing is a briefer
versionof our function-scalingexampleemploying ananonymousfunction.

- val scaled = scaleFunction (fn x => 3 * x * x + 5) 2;
val scaled = fn : int -> int
- scaled 1;
val it = 16 : int

Herewe’vedefinedanunnamed,throwawayfunctionthattakesasingleparameter� andreturns�!� + -j� , and
we’vepassedthis functioninto scaleFunction . Theword fn beginsananonymousfunctiondefinition,
followedby thenameof theparameteranda right arrow => to separatetheparameterfrom thereturnvalue
expression.(This arrow is a slight inconsistency from definingfunctionswith fun , wherean equalssign
separatestheparameterfrom theexpression,but that’s how it is.)

Therearetwo importantrestrictionson theseanonymousfunctions. Theminor restrictionis that they
canhave only oneparameter. (This restrictionis just minor, becausewe caneasilydefinea function that
takesthefirst parameterandreturnsa functiontakingthesecondparameterandcomputingthereturnvalue
for both,similar to whatwesaw in Section3.2.) Themajorrestrictionis that,becausethereis nonamewith
which to referto it, ananonymousfunctioncannotberecursive.

3.4. IDENTIFIER BINDING TIME 17

3.4 Identifier binding time

When it definesa function, the ML interpreterusesthe identifiersdefinedat the time of the function’s
definition.To understandthisdistinction,considerthefollowing transcript.

- val g = 9.78;
val g = 9.78 : real
- fun distanceFallen t = 0.5 * g * t * t;
val distanceFallen = fn : real -> real
- distanceFallen 1.0;
val it = 4.89 : real
- val g = 1.62;
val g = 1.62 : real
- distanceFallen 1.0;
val it = 4.89 : real

We definedg to representtheEarth’s gravity, andthenwe definedthedistanceFallen functionto use
thisg. Laterwe changedg for theMoon’s gravity, but thisdid notaffect thebehavior of thefunction.

This issuebecomesimportant in writing larger programs. In theselarger programs,you breakthe
programinto subproblems,eachsubproblemhandledby a function. And then you write functionsthat
combinethesefunctionsinto theproblemat hand. Now if, in theprocessof writing this overall function,
you discover that a subproblem’s function is wrong, you will redefinethis subproblem’s function. But
becauseof the binding-timeissueillustratedby the above transcript,you must also redefinethe overall
functionto affect theoverall function’s behavior.

Considerthefollowing example.
- fun sq x : real = x * x * x;
val sq = fn : real -> real
- fun dist x0 y0 x1 y1 = Math.sqrt (sq (x1 - x0) + sq (y1 - y0));
val dist = fn : real -> real -> real -> real -> real
- dist 0.0 0.0 3.0 4.0;
val it = 9.53939201417 : real

“Hold on,” you think, “that testwassupposedto return5!” On furtherinvestigation,younoticethatsq was
misdefined.Soyou repairit andretest.

- fun sq x : real = x * x;
val sq = fn : real -> real
- dist 0.0 0.0 3.0 4.0;
val it = 9.53939201417 : real

If you’re not familiarwith thebinding-timeissue,this responsewill throw you for a loop: How coulddist
beunchangedif I changedhow sq works?Of course,theansweris thatdist is still usingtheold valueof
sq ; if we wantto usethenew sq , we have to redefinedist .

- fun dist x0 y0 x1 y1 = Math.sqrt (sq (x1 - x0) + sq (y1 - y0));
val dist = fn : real -> real -> real -> real -> real
- dist 0.0 0.0 3.0 4.0;
val it = 5.0 : real

3.5 Polymorphic functions

Sometimesyoucanwrite a functionthatis completelyambiguousaboutthetypeof its parameter. For these
functions,ML will maintainambiguity, assumingyouwishto keepthefunctionasgeneralaspossible.Such
functionsarecalledpolymorphic functions, becausethey will changeshapebasedon theparametersyou
give it.

Consider, for example,thefollowing definitionof theidentity function.

18 CHAPTER3. MOREABOUT ML FUNCTIONS

- fun identity x = x;
val identity = fn : ’a -> ’a

The’a in theinterpreter’s responseis pronouncedalpha; it is aplaceholderfor whatevertypeis appropriate,
giventheparametersyouusewhencalling thefunction.Theinterpreter’s reply indicatesthatidentity is
afunctiontakinganalphaasaparameterandreturninganalpha.Wecanpassanythingatall to thisfunction,
andit will reinterpretidentity to meanwhatwe want.

- identity 3;
val it = 3 : int
- identity true;
val it = true : bool
- identity real;
val it = fn : int -> real

In thefirst case,theinterpreterran identity asa functionfrom integersto integers.In thesecond,it ran
identity asa function from Booleansto Booleans.And thethird time, it ran identity asa function
from functionsfrom integersto realsto functionsfrom integersto reals.

More impressive examplesare possible. The following function takes two parametersq and _ and
computestheir composition— thatis, thefunctionthat,givenaparameter� , computesqD�r_s���s#"# .

- fun compose f g = (fn x => f (g x));
val compose = fn : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b

The responsehereindicatesthat compose is a function taking two functionsas parameters.The first
function is from alphasto betas,andthesecondfunction is from gammasto alphas.(Notice thatML has
inferredthat the returntype of g mustmatchtheparametertype of f .) The function compose returnsa
functionfrom gammasto betas.

- val realRound = compose real round;
val realRound = fn : real -> real
- realRound 3.8;
val it = 4.0 : real

In thisexample,wecreatedafunctionrealRound , whichis thecompositionof thebuilt-in functionreal
andthebuilt-in functionround . It takesalphato beint , andbetaandgammato bereal , andit computes
thecompositionbasedon this.

In fact,I fibbedabit whenI wrotedown how SML wouldrespondgivenmydefinitionof scaleFunction
earlier. Therewasnothingin the function that indicatedwhat type the parameterfunction took asits pa-
rameter. For this reason,scaleFunction is actuallypolymorphic. The interpreterwould respondas
follows.

val scaleFunction = fn : (’a -> int) -> int -> ’a -> int

So the function could just aseasilyscalea function from realsto integers,or even functionsthat return
integersgivena functionfrom realsto reals.

3.6 Pattern matching and cases

ML includesawayto definea function’s behavior for differentcasesof parametersusinga techniquecalled
pattern matching. In this technique,we list possiblecases,separatedby a vertical bar (‘ | ’). Here is a
redefinitionof thefactorialfunction fact usingpatternmatching.

fun fib 1 = 1
| fib 2 = 1
| fib n = fib (n - 1) + fib (n - 2);

3.6. PATTERNMATCHING AND CASES 19

In evaluatinga function’s value for a given parameter, the interpreterwill try eachof the casesand see
whetherit matchestheparameter. For example,if theparameteris 	 , thenthis matchesthefirst caselisted,
andso the returnvalueis 	 . If the parameteris � , neitherthe first casenor the secondcasematches,but� doesmatchthe third case(wherewe take n to be �); so the returnvalue is the valueof the expression
fib (3 - 1) + fib (3 - 2) .

Usingthenumericvalueswe have seensofar, a patterncanbeonly eithera particularvalue(like 1 or
2), or it canbeanidentifiername.Theidentifierwill matchanything.

If your function doesn’t cover all the cases,SML will kindly warn you aboutthe problem,in caseit
indicatesanerrorin your program.(Sometimesit’s fine.)

- fun fib 1 = 1
= | fib 2 = 1
= | fib 3 = 2;
stdIn:17.1-19.14 Warning: match nonexhaustive

1 => ...
2 => ...
3 => ...

val fib = fn : int -> int

Theinterpreterherestill createdthe fib function,but if you call it with a parameterthatmatchesnoneof
thecases,it spitsbackanerror.

- fib 5;
uncaught exception nonexhaustive match failure

raised at: stdIn:19.13

Patternmatchingfor thefunctionswe’ve seensofar is justaminor convenience— basically, it’s some-
timesanalternative to usingif in thereturnvalueexpression.But in many situations,it is necessary. In the
next chapterwe’ll seesomeof thesecases,andwe’ll beusingpatternmatchingaggressively aswe develop
our functions.

20 CHAPTER3. MOREABOUT ML FUNCTIONS

Chapter 4

Compositetypes

We’ve only workedwith elementarydata typessofar — integers,floating-pointnumbers,andBooleans.
Thesetypescanonly representoneelementalpieceof data.But weoftenwantto beableto representseveral
piecesof dataatonce.To do this,we needcompositedata types.

4.1 Tuples

A tuple in ML is astructurethathasseveraldatatypesput together. A tuplecouldhaveanintegerandareal
number, representingperhapsastudent’s ID numberandgrade.

- val student = (94827, 50.0 + 33.08);
val student = (94827,83.08) : int * real

A tuple’s valueis representedasseveralvalueslistedin parentheses,with commasseparatingthevalues.A
tuple’s typelists thetypesof theseparatevaluesin order, separatedby asterisks(‘* ’).

Somebuilt-in functionstakeatupleasaparameter. For example,thebuilt-in functionMath.pow takes
a tuplecontainingtwo realnumbers� and � asaparameter, andreturnstheresult ��t .

- Math.pow (2.0, 5.0);
val it = 32.0 : real

Tuplesareusefulfor parameterswhenwe want to groupsometogether. For example,whenwe wrote
our dist function, it would be nice if we could actuallyhave two parametersinsteadof four, with each
parameterbeinga tupleof two numbersrepresentingapoint.

- fun dist (x0, y0) (x1, y1) = Math.sqrt (sq (x0 - x1) + sq (y0 - y1));
val dist = fn : real * real -> real * real -> real

We’re usingpatternmatchinghere:Thepattern(x0, y0) matchesa tupleof two values,andwe let x0
representthefirst valueof thetupleandy0 representthesecondvalue.

If we wantto usethefunction,we passit two tuples.
- dist (0.0, 0.0) (3.0, 4.0);
val it = 5.0 : real

Wecanof coursedefineanidentifierto bea tuple,andthenpasstheidentifier’s valueinto thefunction.
- val origin = (0.0, 0.0);
val origin = (0.0,0.0) : real * real
- dist origin (3.0, 4.0);
val it = 5.0 : real

c
�

2001,CarlBurch.All rightsreserved.

21

22 CHAPTER4. COMPOSITETYPES

Tuplesareparticularlyusefulwhenwewantafunctionto returnmultiplevalues.For example,wemight
wanta functionthattranslatesapointby agivenoffset.

- fun translate (x, y) (delta_x, delta_y) = (x + delta_x, y + delta_y);
val translate = fn : int * int -> int * int -> int * int

Returninga tuple is more thana convenience:Before this, writing a function that could returnmultiple
valueswasanimpossibility.

4.2 Lists

Lists in ML give a way of representingseveral dataelementsof the sametype. The distinctionbetween
tuplesandlists givesan interestingtradeoff: A tuple typeallows you to mix typestogether, but it restricts
you to afixedcombinationof types.A list is of variablelength,but eachitemof thelist mustbeof thesame
type.

You candenotea particularlist in ML by enclosingit in brackets,with thedifferentelementsof thelist
separatedby commas.

- [2, 3, 5, 7, 11];
val it = [2,3,5,7,11] : int list

TheML interpreter’s responsegivesthetypeof this list: It is a list of integers.Noticethat thetypedoesn’t
indicateanythingaboutthelengthof thelist — it justgivesthetypeof theelementsof thelist.

Thereis aspecialpre-definedconstantlist callednil by theinterpreter, which is theemptylist, [] .

- nil;
val it = [] : ’a list

As this transcriptindicates,nil is polymorphic.We’ll usenil frequentlywhile writing ourprograms.

4.2.1 The consoperator

Lists have anexpressionoperatorcalledtheconsoperator :: . Givena dataelementon the left side,and
a list of dataelementson the right, theconsoperatorcomputesa list startingwith theelementon left and
followedby thelist on right.

- 2 :: [3,5];
val it = [2,3,5] : int list

Noticetheasymmetryof this operator— while otheroperatorswe have seenhave thesametypeon either
sideof theoperator, theconsoperatorhasa dataelementon the left sideanda list of dataelementsof the
sametypeon theright side.

Also in contrastto the other operators,the consoperatoris right-associative. Other operators,like
subtraction,areleft-associative: 2 - 3 - 5 is understoodas(2 - 3) - 5. But theconsoperatorgoes
theotherway: 2 :: 3 :: [5] is understoodas2 :: (3 :: [5]) .

The consoperatorgivesus a way of building up a list. Considerthe following function, designedto
build a list of thenumbersfrom B down to 1.

fun countDown n = if n = 0 then [] else n :: countDown (n - 1);

Wehaveusedtheinductive methodto build this function:Givena list of numbersfrom Bu�)	 down to 	 , we
canreason,we canconstructa list of numbersfrom B down to 	 by simply putting B on thefront usingthe
consoperator.

4.2. LISTS 23

4.2.2 Simple list functions

Whenwe work with lists,we’ll frequentlywantto write functionsthattake a list asa parameteranditerate
throughthelist. We’ll write thesefunctionsusingtheinductive method— thinkingto ourselves:If wewant
to know theresultfor a givenlist of length B , how couldwe figureit out giventheresultsfor lists of length
lessthan B ?

Summing a list of integers

For example,saywe want to computethe sumof everything in a list. If we have a list of four numbers
[2,3,5,7] , it would beeasyto figureout thesumif we knew thesumfor lists of threeintegers,because
thenwecouldsimplyadd � to thesumof thelist of threeintegers[3,5,7] . Thebasecasefor thisreasoning
wouldbea list of zerointegers.Thesumof no numbersatall is zero.

OurML implementationof this reasoningemploys patternmatching.

fun sumList nil = 0
| sumList (data::rest) = data + sumList rest;

Our first casehandlesthebasecase:Thesumof thenumbersin theemptylist is 0. Thesecondcaseis the
inductive step: Given a list with data at the front andrest beingthe numbersfollowing it, thesumof
everythingin data::rest is data plusthesumof thenumbersin rest .

Here’s aderivationdemonstratinghow thiswouldwork with [2,3,5,7] .

sumList [2,3,5,7] = 2 + sumList [3,5,7]
= 2 + (3 + sumList [5,7])
= 2 + (3 + (5 + sumList [7]))
= 2 + (3 + (5 + (7 + sumList nil)))
= 2 + (3 + (5 + (7 + 0)))
= 17

The namesof the identifiersdata and rest aren’t special: What’s specialis the useof the cons
operatorin thepattern,whichmatcheswhat’s on theleft-handsideto thefirst item of thelist andwhat’s on
theright-handsideto therestof thelist.

Thisstructuredefinesa templatefor probably90%of thelist functionswewrite:

fun functionName nil = ... base case...
| functionName (data::rest) =

... inductive step combining data and functionName rest...

We’ll now seetwo moreexamplesemploying thissamestructure.

Finding a student’sgrade

Saywe have a classrepresentedby a list of students,eachstudentrepresentedby a tupleof an integer ID
numberanda real grade. We want to write a function to find the gradefor the studentwith a given ID
number. Using thesamereasoningasbefore,we askourselvesthis: Supposewe knew how to determine
how to find thegradein ashorterlist; would thathelpusto find thegradein agivenlist?

We answer:Of course!We canimmediatelycheckwhethertheID numberis at the front of the list; if
it’s not, thenit mustbe in the restof it, andso we canuseour ability to find thegradein this shorterlist.
This reasoningis exactlywhatwe canwrite in our function.

fun findGrade id nil = 0.0
| findGrade id ((data, grade)::rest) =

if data = id then grade else findGrade id rest;

24 CHAPTER4. COMPOSITETYPES

We decidedto make a basecasehere,thoughtechnicallythe problemdefinition didn’t call for it, just so
somethingreasonablehappensif thefunctionis givenanID numberfor astudentnot in thelist.

Notice theuseof pattern-matchingin thesecondcasehere:We matchdata to bethefirst elementof
the tupleat theheadof the list andgrade to thebe thesecondelementof the tuple; andwe let rest be
everythingafterthis first student.TheML interpreterwill interpretthis appropriately.

val findGrade = fn : ’’a -> (’’a * real) list -> real

Theinterpreterinferredthat thesecondparameteris a list of tuplesby looking at thepatternin thesecond
case;it knows theseconditem in eachtuple is a realnumberbecausein onesituationthefunction returns
therealnumber����� andin anotherit returnsthesecondelementof the tuple;hencethesecondelementof
thetuplemustbeareal. It infersthatthefirst elementof thelist is ’’a , indicatingthatthis is apolymorphic
function. (Thetwoquotesareto indicatethatthetypemustsupportequality-testing.)

Inserting into an ordered list

In thefinal exampleproblem,we want to write a function that takesa parameter� anda list v of integers
thatthefunctioncanassumeis in increasingorder. Thefunctionshouldreturna list includingboth � andall
theelementsof v , maintainingthesameincreasingorder.

Again, we reason:If we know how to insert � into a list shorterthan v , how doesthathelpus insert �
into v ?

fun insAscending x nil = [x]
| insAscending x (data::rest) =

if x <= data then x::data::rest;
else data::(insAscending x rest)

Thissolutionobservesthat,if � is atmostthefirst itemin v , thenwesimplywantto returna list with � first
andthen v following. Otherwise,we know � follows thefirst item in thelist, andsotheresultwould insert� into theitemsfollowing thefirst item,andthenaddthefirst itemof v at thefront of thelist.

4.2.3 Complex list functions

Sometimesthis templatedoesn’t fit. To seesomeexamples,we’ll investigatean implementationof the
mergesort algorithm— a particularalgorithmfor sortinga list of items.This is a recursive algorithmthat
worksby first splitting thelist into two equal-sizedpieces.Then,usingmergesortrecursively, thealgorithm
sortseachof thesepieces. Thenwe merge the two sortedlists together. Figure4.1 hasa recursiontree
diagrammingof how thisalgorithmmight sorta list of numbers.

Thisalgorithmhasthreeparts:splittingthelist, sortingeachhalf, andthenmergingthem.Eachdiverges
from thestandardlist algorithm.We’ll look at thefirst part,thenthethird, thenthesecond.

In thefirst part,we wantto createa functionthattakesa list asaparameterandreturnsa list containing
half of theelementsof theparameterlist. To do this,we’ll write everyOther , which returnsevery other
elementin the list. While thesimplelist functionsgo down the list oneelementat a time, in this function
we’ll go down thelist two elementsat a time. Eachtime,we’ll only addthefirst of thetwo elementsto the
returnedlist.

fun everyOther nil =nil
| everyOther [x] =[x]
| everyOther (x::y::rest) = x :: (everyOther rest);

To write this,we hadto includea secondbasecase— if there’s justoneelement,we can’t really talk about
the first two elementsof the list. (This secondcaseis analogousto the secondbasecaserequiredin our
recursive implementationof fib .)

4.2. LISTS 25

2 6 4 4 4 8 9 1

2 4 6 8 4 9 4 1

2 4 6 4 4 9 8 1

42 6 4 4 9 8 1

1 4 8 92 4 4 6

1 2 4 4 4 6 8 9

2 4 4 6 1 84 9

Figure4.1: An examplerecursiontreefor mergesort.Thelinesarelabeledby returnvalues.

The third part — merging two lists — involves a function taking two lists as parameters.In each
recursivecall, we look at thefront of bothof thelists; thelesserwill goat thefront of thereturnedlist. Then
wemake arecursive call onbothlists,with thelesserremovedfrom its list. In this recursive call, oneof the
parameterswill be identicalandoneof theparameterswill beoneelementshorter. Our basecaseis when
oneof thetwo lists is empty.

fun merge nil list = list
| merge list nil = list
| merge (data0::rest0) (data1::rest1) =

if data0 < data1
then data0 :: (merge rest0 (data1::rest1))
else data1 :: (merge (data0::rest0) rest1);

And our second(andfinal) part is to sorta list. We’ll breaktheparameterlist into two halves(oneby
calling everyOther on the parameterlist andthe otherby calling everyOther on the parameterlist
with thefirst elementremoved),sort eachhalf usinga recursive call, andthenusingmerge to sort them.
Ourbasecaseis whenwereachanemptylist or aone-elementlist — in bothcases,sortingthelist is trivial.

fun mergeSort nil = nil
| mergeSort [data] = [data]
| mergeSort (data::rest) =

let
val oddElts = everyOther (data::rest);
val evenElts = everyOther rest;
val sortedOddElts = mergeSort oddElts;
val sortedEvenElts = mergeSort evenElts;

in
merge sortedOddElts sortedEvenElts

end;

Writing list functionslike thesetake a bit of inspiration;all threeusedthe inductive method,but none
of thecasesusedthetypical list-functiontemplateof combiningtheheadof thelist with theanswerfor the
list with thisheadelementremoved.

4.2.4 Built-in list functions

ML includesa hostof built-in list functionsto aid you in writing programsthat work with lists. These
functionsrepresentcommonoperationsyou might want to performon lists; it’s usefulto studythesetools
sothatyoudon’t endupreinventingthewheel(or thehammer, if youprefernot to mix metaphors).

26 CHAPTER4. COMPOSITETYPES

For example,it’s frequentlyusefulto find thesumof everythingin a list. The length functiondoes
this. Usingthiswith thesumList functionwewroteearlier, wecandefineafunctionthatfindstheaverage
of a list of integers.

- length [3,4,5,6];
val it = 4 : int
- fun average lst = real (sumList lst) / real (length lst);
val it = fn : int list -> real

Or you maywantto appendtwo lists together. ML provides@, anoperatorthattakestwo lists on either
sideandappendsthem.

- [1,3,5,7] @ [2,4,6,8]
val it = [1,3,5,7,2,4,6,8] : int list

Themap functiontakesa functionanda list andreturnsa list of theresultsof applyingthefunctionto
eachelementof the list in order. For example,saywe want to convert a list of integersinto a list of reals;
we canjustusemap to applythefunctionreal to eachelementof thelist.

- map real [2,3,5];
val it = [2.0, 3.0, 5.0] : real list

Or supposewe wantto sumup thesquaresof all thenumbersin a list. No problem:We call sumList on
thelist returnedby mappingasquaringfunctiononeachelementof thelist.

- sumList (map (fn x => x * x) [2,3,5,7]);
val it = 87 : int

(Noticetheuseof theanonymoussquaringfunctionhere.)
Therearemany otherbuilt-in functions— this is just a sample.Whenever you want to do something

thatsoundslike a commonthing to want to do, checkwhetherit’s alreadybeenbuilt beforeattemptingto
build yourown.

4.3 Strings (and characters)

Sofar we have beenworking exclusively with programsfor numbers.Often,however, ML functionshave
to work with text instead.ML providestwo datatypesfor dealingwith text — thecharacterandthestring.

4.3.1 Constantvalues

Thecharacter is themoreelementarytype: It’s just a singlecharacter, like a letteror a digit. In program
text, it’s representedby asharpsignfollowedby theletterenclosedin double-quotes.

- val initial = #"C";
val it = #"C" : char

A string is a sequenceof several letters. It allows you to representa word or a sentence.A constant
stringcanberepresentedin ML by enclosingit in double-quotes.

- val sentence = "ML is fun.";
val sentence = "ML is fun." : string

Youmaybewondering,“If astringis enclosedin double-quotes,how canI getadouble-quoteinto astring?”
Theansweris thatyouprecedethedouble-quoteby theescapecharacter, thebackslash‘ \ ’.

- val quote = "She said, \"ML is fun.\"";
val quote = "She said, \"ML is fun.\"" : string

4.3. STRINGS(AND CHARACTERS) 27

Don’t be fooled by the backslashesthe interpreterprints in its response— it’s just showing an escape
characteritself sothatyouthereaderdon’t getconfusedaboutwhetherthedouble-quoteis endingthestring
or is partof thestring. Internally, thatbackslashisn’t there.

“Ok,” youmaythink, “but whatif I wantabackslashin my string?” Youcanplacetheescapecharacter
beforeabackslashtoo.

- val directory = "C:\\WINDOWS";
val directory = "C:\\WINDOWS" : string

You can also usethe escapecharacterto denotespecialcharacters.The most importantof theseis the
newline character, indicatinga line break.A backslashfollowedby a lower-casen givesyou this.

- val poem = "Roses are red.\nViolets are blue.\n";
val poem = "Roses are red.\nViolets are blue.\n" : string

4.3.2 Working with strings

Like lists,ML hasseveralbuilt-in functionsfor workingwith text thatyoumightneedfor building functions
thatmanipulatetext. Again,we’ll just samplea few.

Thefirst is thebuilt-in operator‘ ˆ ’ (a caret). It works like the‘@’ operatorfor appendinglists, but ‘ ˆ ’
appendsstrings.

- "ML" ˆ " is fun."
val it = "ML is fun." : string

In somesense,the built-in explode and implode functionsarereally all you needto know about
strings.They give awayof translatingstringsto andfrom listsof characters.Theexplode functiontakes
a stringandreturnsa list of charactersin it; the implode takesa list of charactersandconstructsa string
includingthosecharacters.

- explode it;
val it = [#"M",#"L",#" ",#"i",#"s",#" ",#"f",#"u",#"n",#"."] : char list
- implode it;
val it = "ML is fun." : string

If you’vemasteredworkingwith lists,thenall youneedto learnis thesetwo functions,andyoudowhatever
you wantwith stringsalso.For example,if we wantto capitalizeall thelettersof astring,we canusethese
functionswith mapandthebuilt-in characterfunctionChar.toUpper .

- implode (map Char.toUpper (explode "ML is fun."));
val it = "ML IS FUN." : string

In fact thereis a String.map functionwhich is thestring type’s answerto the list type’s map
function.Wecouldusethatinsteadhere.

- String.map Char.toUpper "ML is fun.";
val it = "ML IS FUN." : string

Of coursetherearemany otherbuilt-in string functions.Whenyou want to work with strings,checkout a
referenceguideto seehow muchof whatyou wantcanbedonewith whatis alreadybuilt into ML.

