Name:

- **1.** [8 pts]
 - **a.** Relative to the implication $p \rightarrow q$, what name is given to $\neg q \rightarrow \neg p$?
 - **b.** Complete the below truth table for the expression $\neg q \rightarrow \neg p$.

2. [8 pts] Translate the following statements into logical expressions using the following symbols.

K(x)	x is wearing socks.	C(x)	x is in this class.
S(x)	x is wearing shoes.	Burch	Dr. Carl Burch

- **a.** Dr. Burch must be wearing socks to wear his shoes.
- **b.** Somebody in this class is wearing socks but not shoes.
- c. At least two different people in this class are wearing shoes.
- **3.** [8 pts] Show $\neg s$ using a formal proof based on the given hypotheses. Listed at right are some rules of inference that might possibly prove useful.

1.	$r \wedge s \to t$	hypothesis	$p \wedge q$	Simplification
2.	$\neg t$	hypothesis	p	
3.	r	hypothesis	$\neg q$	Modus tollens
			$p \rightarrow q$	
			$\neg p$	
			$p \vee q$	Disjunctive syllogism
			$\neg p$	
			q	

- **4.** [8 pts] Give an integer value for *n* **between 10 and 23** for which each of the following is true. (You can use different numbers for different expressions.)
 - **a.** $3 \equiv n \pmod{6}$
 - **b.** 9|*n*
 - **c.** $25 \mod n = 1$
 - **d.** gcd(24, n) = 4

Math 240, Fall 2005, Exam 1

5. [8 pts] In Assignment 3, we saw the Euclidean algorithm for computing greatest common divisors: The GCD of a and 0 is a, while the GCD for a and a non-zero b can be computed by computing the GCD of $a \mod b$ and b.

Use this algorithm to compute gcd(84, 60), showing your intermediate steps.

6. [10 pts] Prove that for all integer values of a, c, and d, $d \mid a$ implies $dc \mid ac$.

7. [10 pts] Prove that every positive composite integer n has a factor that is more than 1 but not more than \sqrt{n} .

- **8.** [10 pts] Consider the function $f : \mathbb{N} \to \mathbb{N}$ defined as $f(x) = \lfloor \sqrt{2x} \rfloor$.
 - **a.** Is f one-to-one? Explain.

b. Is *f* onto? Explain.

Math 240, Fall 2005, Exam 1

9. [15 pts] We saw in class that the set of positive rational numbers is countable. Describe a one-to-one, onto function (possibly the same one we saw in class) from \mathbb{N} to the positive rationals.

Supposing this function were named f, compute the specific rational number to which each of the following maps.

i. f(0) =ii. f(4) =iii. f(7) =iv. f(10) =

10. [15 pts] Prove using induction that the sum of the first n odd numbers, i.e.

$$\sum_{i=1}^{n} (2i-1) \, ,$$

is n^2 . Your basis step should be for n = 1.