
Solutions, Math 240, Fall 2005, Exam 2
1. Basis step (n = 0):

0
∑

i=0

2i = 20 = 1 = 2 − 1 = 20+1
− 1 .

Inductive step: Suppose we already know that

m
∑

i=0

2i = 2m+1
− 1

for an integer m. We want to show that the value of
∑

m+1

i=0
2i is 2m+2 − 1. In the following sequence

of equalities, we start by peeling off the final term of the summation, then applying the inductive
hypothesis, and then simplifying.

m+1
∑

i=0

2i =
m

∑

i=0

2i + 2m+1 =
(

2m+1
− 1

)

+ 2m+1 = 2 · 2m+1
− 1 = 2m+2

− 1 .

Thus the first and last expressions are equal, which is what we wanted to complete the induction proof.

2. a. n sn

0 1
1 0
2 1
3 1
4 2
5 3
6 5

b. The proof is wrong when it claims that the inductive hypothesis says that sm−1 is 0: When
m = 1 (which is allowed since m ≥ 1), then m − 1 is 0, which doesn’t fall in the range for
which the inductive hypothesis applies.

3. We first choose where to place the vowel (4 choices), then which vowel to place there (5 choices),
then which consonant to place in each of the remaining spots (21 choices each), for a total of

4 · 5 · 213 = 185,220 .

4. (i.) 4 is divisible by 2 or 3, because it is divisible by 2.
(ii.) 9 is divisible by 2 or 3, because it is divisible by 3.
(iii.) if b is divisible by 2 or 3, then (a − 1)b, which is divisible by b, is

also divisible by 2 or 3.
(iii.) if a is divisible by 2 or 3, then a(b − 1), which is divisible by a, is

also divisible by 2 or 3.

5. There are ten different pairs of numbers that sum to 21: 1 and 20, 2 and 19, . . . , 10 and 11. If we
select eleven distinct numbers, each of which falls into one of these ten pairs, then according to the
pigeonhole principle, at least one pair must have both of its numbers selected. The sum for this pair
will be 21.

6. 2 ·
(

1 + 4 +
(

4

2

))

· (1 + 3) · 23 = 2 · 11 · 4 · 8 = 704
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7. Suppose we are counting the number of ways to choose two k-size subsets A and B from a set of n

elements. One way to make this choice is to first choose the elements for A — there are
(

n

k

)

ways
of doing this — and then to select the element for B from the remaining n − k elements — there
are

(

n−k

k

)

ways of doing this. According to the product rule, the number of ways for these choices is
(

n

k

)(

n−k

k

)

.

Another way, though, is to first select the 2k elements appearing in both A and B, and then select
which k of them should go into A. In this case, we have

(

n

2k

)

choices for the first selection and
(

2k

k

)

choices for the second, for a total of
(

n

2k

)(

2k

k

)

.

8. To count the total number of packings without any restrictions, we are counting the solutions to the
equation sU + sN + sK = 10 using nonnegative integers only; there are

(

12

2

)

such solutions. We do
not want to count, however, solutions using more than six blue socks; if we had seven blue socks, we
would have three days to account for, and there are

(

5

2

)

ways to fill those last three days. Similarly,
there are

(

5

2

)

ways using more than six brown socks, and
(

5

2

)

ways using more than six black socks.
Thus, the number of ways using at most six pair of any single color is

(

12

2

)

− 3 ·

(

5

2

)

.

(We would be over-subtracting if there were a way of having more than six blue and six brown socks;
but there aren’t, because we are only packing for ten days.)

9. This is like counting all arrangements of the letters A,A,A,A,B,B,B,B,C,C,C,C: Each student corre-
sponds to a position in the sequence, and the letter in that position dictates which group the student is
a part of. There are

12!

4!4!4!
= 34,650

different arrangements.

This overcounts, however: for example,

A,A,A,A,B,B,B,B,C,C,C,C

is counted separately from

B,B,B,B,C,C,C,C,A,A,A,A,

but really these two group assignments are indistinguishible. Each assignment is counted 3! different
times (each permutation of A, B, and C yields another assignment), so the real answer is

12!

3!4!4!4!
= 5,775

10. There are 24 sequences with three heads at the front, and 24 with three heads at the end, but also there
are 21 that have three heads at both the front and the end; thus, there are 24 + 24 − 21 sequences with
three heads at the front and/or the end. The probability of encountering one of these sequences when
we randomly select one of the 27 sequences is

24 + 24 − 21

27
=

16 + 16 − 2

128
=

30

128
.


