Logisim: A graphical system for logic circuit design
and simulation

CARL BURCH
St John's University, Collegeville MN

Logisim enables students from introductory courses to design and to simulate logic circuits.
The program’s design emphasizes simplicity of use, with a secondary goal of enabling design of
sophisticated circuits. This motivates a two-tiered system, where users can move to the second
tier by selecting a menu option.

Users draw circuits of logic gates using the toolbox model popular in drawing programs. The
circuit automatically propagates circuit values through the circuit; by selecting the appropriate
tool, users can toggle switches to see how the circuit behaves in other situations. In the advanced
tier, the user can treat circuits as black boxes within larger circuits, enabling the simulation of
hierarchical designs. The author has successfully drawn and tested a simple eight-bit CPU using
the program.

The program has proven useful in a variety of introductory courses, from a non-majors survey
course to a sophomore-level Systems course. Students find Logisim simple to follow, and they find
the laboratories designed around it useful in reinforcing the circuit concepts from class.

In this paper, we identify and compare a variety of systems similar to Logisim, we explore
Logisim’s features in detail, and we examine its use in class assignments.

Categories and Subject Descriptors: C.0 [Computer Systems Organization - General]: Mod-
eling of Computer Architecture; 1.6.5 [Simulation and Modeling]: Model Development; K.3.1
[Computers and Education]: Computer Uses in Education

General Terms: Design, documentation

Additional Key Words and Phrases: Circuit simulation, digital logic, education

1. MOTIVATION

The computer science department of the College of St Benedict and St John’s
University (CSB|SJU) regularly offers three courses in which logic circuits play a
major role. Circuits are one of the first units in both of our survey courses (a non-
majors course and a first-semester majors course). And circuits make up a large
fraction of a sophomore-level Systems course. All of these courses have laboratory
sections where students complete structured assignments during scheduled meetings
in computer laboratories. Because of the significant role of circuits in the class, some
laboratory assignments must involve hands-on practice with logic circuits.

Author’s address: Carl Burch, Computer Science, St John’s University, Collegeville MN 56321.
cburch@cburch.com.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 2002 ACM 0000-0000/2002/0000-0001 $5.00

ACM Journal Name, Vol. 2, No. 1, March 2002, Pages 1-12.

2 . Carl Burch

Though an important part of the courses, logic circuits are not so prominent that
students can spend much time building circuits on breadboards. The objective is
that students know the basics of how gates combine to compute complex functions;
breadboards require additional knowledge superfluous to this objective. Thus we
must use a simulator.

The capacity we need from the simulator is relatively simple and does not justify
the purchase of commercial software. We would prefer the software to work on
both Unix and Windows, as constrictions set by other course material dictate that
two courses meet in a Windows laboratory, and one meets in a Unix laboratory. A
thorough search yielded no alternatives that met these criteria satisfactorily.

Thus the author began his own, dubbed Logisim. The emphasis of this project
is to develop an easy-to-learn program for developing and simulating circuits of
logic gates. The greatest emphasis of the project is on ease of learning, so that
students in our introductory courses, who spend only two laboratory sessions with
the program, meet as few problems learning the software as possible. For these
students, sophisticated ability is not important.

But the Systems students do build relatively sophisticated circuits, so a secondary
emphasis is on the power of the circuits built with the program. They need the
capability to build circuits illustrating the internals of a simple CPU. This requires
the ability to “black-box” smaller circuits as components within larger circuits.

Logisim is a Java application, so that it can run on both Windows and Unix
workstations. The program is actually one piece of a larger suite of Java programs
developed locally for other modules of our introductory courses (numeric represen-
tation, assembly programming, and finite automata).

For those who wish to use Logisim in their own classes, Logisim is publicly
available on the Web. There is no charge for its use.

http://www.cburch.com/proj/logisim/

The author would appreciate hearing of its use at other institutions. If feedback
indicates that Logisim is proving useful, the author would welcome the opportunity
to extend its capabilities further.

2. COMPARISON WITH EXISTING PROGRAMS

Many programs take an approach similar to Logisim’s. To get an idea of how the
alternatives compare, the author tried a large sample of inexpensive alternatives
(many derived from [Wolffe et al. 2002]). Figure 1 lists all the sampled programs.
All of these are similar to Logisim in that they provide a graphical toolbox interface
for composing and simulating logic circuits.

Omitted from comparison are the similar but more expensive Windows programs
Digital Works 3.0 and LogicWorks, both of which implement all or nearly all of the
features listed [Mecanique 2001; Capilano 1999]. Also omitted are design programs
that do not permit simulation (like DesignWorks [Capilano 2001]) and simulation
programs where the circuit is specified in text files (like esim [Miller and Squire
2000)).

Figure 2 compares the features of the evaluated programs, ordered based on an
approximate evaluation of their suitableness for a sophomore-level computer orga-
nization course. The table omits the evaluated programs judged least suitable for

ACM Journal Name, Vol. 2, No. 1, March 2002.

Logisim . 3

program reference platform type
Circuit Builder [Karweit 2000] applet freeware
Digital Circuit Simulator 1.0 [Zidar 2001] Windows shareware
Digital Simulator 1.1 [Knaian 1994] Windows shareware
Digital Simulator 3.2 [Herz 1998] Windows freeware
Digital Works 2.0 none?® Windows freeware
DigSim 1.00b3 [van Rienen 1996] applet open source
DigiTCL 0.3b0 [Craig 1997] Unix/Windows open source
EasySim 2.04 [Research Systems 2001] Windows commercial
Logic Simulator [Gordon College 2001] applet freeware
LogicSim 3.0b [Masson 1996] Macintosh freeware
LogicSim 2.08 Tetzl 2001] JVM freeware
Logisim 1.04 - JVM freeware
Multimedia Logic 1.2¢c [Softronics 1997] Windows freeware
Probe 0.97 [Boothe 1999] applet freeware
xLogicCircuits [Eck 2000] applet open source
Simcir 1.2.1 [Arase 2000] applet open source

%Digital Works 2.0 predates the current commercial version of Digital Works [Mecanique 2001].
A Web search revealed several class pages enabling the download of version 2.0 but no permanant
Web host to cite.

Fig. 1. Graphical logic circuit simulators included in comparison.

=
g 8
Q — =
® i
N = © B L2
= g S = &5
ol 1) a w Q. et S —
+ 9& X 7 T L o 57 3% 422
o . [= = T N - — S o D <
> o > 3 o N = S g g & N
— — g = o < o —_ = = = Q
g £Fg 5SS EET ER g P g£EF
£ #E 3 28 5§ Bo EE w8 E¢
2 83 = &0 =2 SN ©u =8 EE
2 BE m ¥ FE wy w5 wE 5T
S S& A RE g8 SE AR AX 32
custom wire paths yes yes yes yes yes yes yes yes yes
wires indicate values yes yes no yes yes yes yes no no
variable-input gates yes no yes no yes no yes no no
clock component no yes yes yes yes yes yes yes yes
flip-flops yes yes yes yes yes yes yes yes yes
custom components yes yes yes yes no yes no no no
save circuit yes yes yes yes yes yes yes yes yes
print circuit yes yes yes no yes yes no no yes

Fig. 2. Comparison of graphical logic circuit simulators.

this purpose. With each program, the author of this paper attempted to determine
whether it addresses each of a selection of important features.

custom wire paths. The program’s interface allows the user to specify the wire
paths. This is in contrast to simpler interfaces where the user must add wires by
dragging between two component connections; usually, the wire appears simply as
a straight line between the component connections. While this interface is simple
and intuitive, the reduced flexibility leads to ugly circuits and severely limits the
size of circuits that one can practically build in the system.

ACM Journal Name, Vol. 2, No. 1, March 2002.

4 . Carl Burch

wires indicate values. During simulation, the program indicates the value that
each wire is carrying. Such programs usually draw a wire carrying low voltage with
one color and a wire carrying a high voltage with another color.

variable-input gates. The program incorporates AND and OR gates that can
accept more than two inputs.

clock component. The program includes a clock device that toggles between out-
putting high and low voltage repeatedly.

flip-flops. The program includes a flip-flop component permitting the simple de-
velopment of sequential circuits.

custom components. The user can design the internals of components to appear
repeatedly within larger circuits.

save circuit. The user can save a circuit to a file.
print circuit. The user can print a circuit to the printer.

In some situations, an abundance of features is worth less than having a short
learning curve. Such is the case with our survey courses, when students complete
only one or two laboratory assignments using the program; any time spent learning
the program is wasted laboratory time. Based on the author’s subjective judgment
(certainly not unbiased), none of the programs have a more intuitive interface than
Logisim for these basic features. Most are more complex, some unsuitably so for
these classes’ requirements.

Nonetheless, compared to most of the evaluated programs, Logisim boasts a
much wider set of features. In particular, the ability to build and edit hierarchical
circuits is a rare feature, but one that is necessary if the program is to scale up to
a full-semester course.

Of the evaluated programs, only two, besides Logisim, have a feature set large
enough that students could build a reasonably sophisticated CPU circuit using it:
Digital Works and LogicSim. But these programs have three major problems.

—The authors of Digital Works nor LogicSim apparently do not intend to release
any future non-commercial versions. (Digital Works has gone commercial, and
no new versions of LogicSim have appeared for over five years.) The author of
Logisim intends to continue creating free versions of Logisim.

—Digital Works and LogicSim are limited to their specific platform (Windows and
Macintosh, respectively). Logisim should work on any platform that supports
Java 1.2 or later, including Unix, Macintosh, and Windows.

—In the author’s subjective judgment, Logisim requires less training than Digital
Works or LogicSim for students who wish to use the program only for simple
combinational circuits.

In their favor, Digital Works and LogicSim both have some significant features that
Logisim does not share, which may make them more suitable for some topics of a
full-semester organization course.

While Logisim is not unique, it appears as easy to use as other programs, while
boasting a large feature set, a simple interface, a small price tag, and compatibility
across many platforms. Digital Works 2.0 and LogicSim are good, inexpensive
alternatives for institutions whose laboratories are compatible.

ACM Journal Name, Vol. 2, No. 1, March 2002.

Logisim . 5

— -4 | Logisim: main - O X
File Edit Options Help

hEA >-DIp|a]e
(——1

Fig. 3. A simple circuit built in Logisim.

3. THE LOGISIM INTERFACE

Now we examine how one can use Logisim in detail. Since Logisim works at two
levels, we first describe the features of the beginners’ level, and then the features
added when the user selects the Advanced Tools option.

3.1 Beginning features

Figure 3 contains a screen shot illustrating what beginning Logisim users see. Lo-
gisim uses the toolbox concept common in drawing programs. Starting from the
left side of the toolbar, the tools available to the beginner are the simulation tool,
the selection tool, the wiring tool, and the label tool. Continuing rightward, there
are tools for adding NOT, AND, and OR gates, as well as tools for adding input
switches and output LEDs.

A student building a circuit typically first lays down the components of the
circuit. The student selects the tool for the gate to add. As the mouse moves
across the canvas area, a ghost appears where the gate would be placed when the
student clicks the mouse. All gates are snapped to a strict grid.

The second step is adding wires. The simplicity of Logisim’s wiring tool may
be its strongest feature. Students can drag anywhere on the canvas to place a
wire. All wires must be horizontal or vertical, and they must fit exactly onto the
grid. The program automatically detects and draws the connections as the user
adds each wire: Anything hit by the new wire’s endpoints are connected, as are
any existing wires that terminate at the new wire. (This behavior is more intuitive
than it sounds.) In attaching to AND and OR gates, all five grid points on the
left side are open for attachments. (For circuits with many gates, Logisim includes
a “Small Gates” option. When selected, the gate tools add smaller gates allowing
only three connections. Figure 6 contains these gates.)

The final step is simulation. Even while the student adds wires, they can see the
values flowing through the wires. (A bright green indicates a true value, while a
dark green indicates a false value. Wires not yet connected to a known source are
a pale blue.) Once the student selects the simulation tool, a click on any switch

ACM Journal Name, Vol. 2, No. 1, March 2002.

6 . Carl Burch

— i [Logisim: main BN =S
File Edit Project Options Help

B [AA D o[e|E)ofr| [Ofesese |

)

|

©8CI130cPU

[
|I
==

Fig. 4. A more complex circuit in Logisim.

toggles its output value, with immediate propagation through the circuit.

When the student adds something mistakenly, a right-click (or command-click)
on the circuit component will bring a pop-up menu, including a Delete option. Also,
the selection tool permits selecting components within a rectangular region of the
circuit. The user can cut, copy, and paste sets of components via the Edit menu.

The File menu gives students the ability to save their circuits for future editing
and to print their circuits for attachment to their laboratory reports.

3.2 Advanced features

For non-majors, who represent about half of the users of Logisim at CSB|SJU,
the above is all of Logisim that they see. But other students, when they want to
develop sequential and hierarchical circuits, will select the Advanced Tools option
in the Options menu. This enables Logisim’s more complex tools.

Figure 4 contains a screen shot illustrating a more complex circuit built using
Logisim. In fact, this screen shot is of an implementation of the simple eight-bit
CPU with 32 bytes of memory that our non-majors learn to program. It illustrates
the practical limits of the current version of Logisim, but it goes well beyond what
our students do in their classwork.

The Advanced Tools option adds tools for a few more circuit components: D flip-
flops, constant-value sources, and tri-state gates. But the most notable additions
that come with selecting Advanced Tools are the subcircuit tool and the Project
menu, which enable hierarchical circuits.

Logisim views a circuit as a set of “subcircuits,” each with a user-defined name.
The Project menu lists all subcircuits in the currently open circuit. Selecting a
subcircuit’s menu item brings up that subcircuit for editing. The default subcircuit
(which indeed is all the beginning user ever sees) is titled “main”. Users can add
new subcircuits via Add New Subcircuit under the Project menu. This enables
them to design useful pieces of a larger circuit, such as the multiplexers or the ALU
used in Figure 4.

To use a subcircuit as a black box within another subcircuit, the user would

ACM Journal Name, Vol. 2, No. 1, March 2002.

Logisim . 7

select the subcircuit tool on the far right side of the toolbar. The user selects the
subcircuit to add from the list box in the toolbar (listing all subcircuits within the
current project).

A subcircuit component appears as a rectangle with pins on the left and right
sides. The pins on the left side correspond to the subcircuit’s switches (in the same
top-down order), while the pins on the right side correspond to the subcircuit’s
LEDs (also in the same top-down order). This simple inferred structure from the
subcircuit simplifies the circuit development process, though at the expense of less
flexibility in how the subcircuit appears. It would be nice, for example, for a XOR
gate subcircuit to appear as a XOR gate when it is used. But the added complexity
this would entail both to the user and to the program conflicts with the design goals
of Logisim.

When the circuit propagates values into a subcircuit component, it propagates
those values through the subcircuit, and the values that this subcircuit’s LEDs take
on are the values propagated from the subcircuit component onward. (The subcir-
cuit maintains values from previous propagations, so that a sequential subcircuit
works well, even if it appears several times within the same circuit.)

4. EXPERIENCE WITH LOGISIM

At its inception in October 2000, Logisim had only fundamental features; its only
advantages were its simple user interface and its compatibility with both Unix and
Windows. The restricted feature set was adequate for the level of usage in our
introductory survey courses.

The instructor of our sophomore-level Systems course noticed its potential, how-
ever, and began using it in that course. This usage motivated the addition of
new features lifting it to its current version. By the Fall 2001 semester, Logisim
reached version 1.0, sporting project-management features to enable building and
debugging larger circuits. Also added were the selection tool, a more complete help
system, and many minor enhancements. Bugs discovered and fixed during its use
in the Fall 2001 semester pushed Logisim to version 1.04.

Logisim has proven a boon for teaching logic circuits, simple enough for stu-
dents to dive into practicing concepts in an immediate-feedback environment. At
CSB|SJU, we now regularly use Logisim in three courses.

CSCI 130. A non-majors survey of computing. One topic of this course is Boolean
function computation with logic gates. Logisim is at the center of one laboratory
assignment. In it, students practice deriving truth tables from circuits and building
combinational circuits from truth tables.

CSCI 150. The first-semester course in our computer science curriculum, a more
intensive computing survey. A quarter of the course emphasizes computer archi-
tecture; two of its labs center on Logisim. The first is similar to the CSCI 130
lab, giving students the opportunity to practice converting between truth tables
and logic circuits and simplifying Boolean expressions. The second lab, described
below, introduces students to sequential circuits through a systematic construction
of a problem inspired by vending machine controllers.

CSCI 210. A sophomore-level Systems course, which continues the concepts of
CSCI 150 for another quarter-semester. In this course, one laboratory session uses

ACM Journal Name, Vol. 2, No. 1, March 2002.

8 . Carl Burch

electronics breadboards to give students the idea of connecting electronics. Exper-
imenting with the more sophisticated circuits seen in the classroom is impractical
on breadboards, however. So the next three laboratories use Logisim, when they
successively build a memory subsystem, an ALU, and a control unit to form a
simple CPU based on Logisim’s primitive components.

As an example of what students do with Logisim at CSB|SJU, we will examine
the second CSCI 150 lab, which introduces students to sequential circuit design. In
the classroom, students see how to build both an R-S latch and a D latch, but the
only time they see its use is in a brief overview of how one could build a register
system using D latches. The lab we are examining introduces students to sequential
circuit design.

The laboratory supposes the student has been contracted by FizzlePop, Inc, a
hypothetical manufacturer of soft drinks for price-conscious consumers, to design a
controller for their vending machines. FizzlePop, Inc, manufactures only one type
of soda (hence buttons on the machine to select a soft drink are superfluous), and
they sell it for 15 cents.

The controller receives two Boolean inputs (in, amt): (0, z) when nothing is being
deposited, (1,0) when the user deposits a nickel, and (1,1) when the user deposits
a dime. The controller is to have two Boolean outputs (out, what): (0,0) when the
machine is to perform no action, (1,0) when the machine is to dispense a soda,
and (1,1) when the machine is to dispense both a soda and a nickel. (The machine
contains an infinite supply of sodas and nickels.)

The laboratory tells students that they will employ two flip-flops (Q1, Qo) in
their machine: (0,0) indicates that the vending machine user has five cents toward
a FizzlePop, (0,1) indicates ten cents, (1,0) indicates the machine dispenses a
FizzlePop, and (1, 1) indicates the machine dispenses both a FizzlePop and a nickel.

In the assignment’s first part, students prepare for the circuit’s design. They
create two truth tables specifying the circuit’s internal behavior. The first truth
table has the flip-flop values on its left side and the controller outputs on the right
side; the second truth table has the controller inputs and the current flip-flop values
on the left side and the updated flip-flop values on the right side. After building
the truth tables on paper, the students then construct four minimized Boolean
expressions, one for each of the controller outputs, and one for each of the two
updated flip-flop values.

In the second part, the student builds the complete controller circuit using Lo-
gisim. To aid the student in constructing a complete circuit incorporating the
expressions from the first phase, the laboratory assignment shows Figure 5. Build-
ing the circuit in Logisim is generally a two-step process: First the student lays
down all the components of the circuit to get an outline of how things will fit
(yielding Figure 6(a)). Then the student connects the various components with
wires (Figure 6(b)).

The third part of the laboratory assignment has the student test the circuit
to verify that it works as specified. Assuming the circuit currently appears as in
Figure 6(b), the student notes that the current outputs are (1,1), indicating that the
machine has just dispensed a FizzlePop and a nickel. Suppose the student decides
to try simulating the insertion of a nickel. The student selects the simulation tool

ACM Journal Name, Vol. 2, No. 1, March 2002.

Logisim . 9

.

D
in flip-flop

o

.

out

D
flip-flop

B

Fig. 5. Template for FizzlePop vending machine controller.

— i [Logisim: main - O X — - [Logism: main -0 X
File Edit Project Options Help File Edit Project Opfians Help

out

1
D : what@
(a) Laying down gates (b) Laying down wires

Fig. 6. Building the FizzlePop controller circuit.

and clicks on the in switch to change that input to 0; now we are simulating no
coins being inserted. The student would then switch the value of amt to 0; still
nothing is being deposited. And finally the student clicks the in switch, simulating
the nickel’s insertion. The displayed circuit would now be that of Figure 7(a).
The student observes that the machine’s output (0,0) indicates that the machine
dispenses nothing, which matches with the proper behavior, as now the hypothetical
user has deposited only 5 cents toward a FizzlePop.

Now, the student might reason, inserting a dime should alter the controller’s out-
put to indicate dispensing a FizzlePop. To simulate this, the student would click in,
then amt, then 4n, to simulate the insertion of a dime. The output (1,0), observed
from the screen shot in Figure 7(b), indicates that the controller is indicating to
dispense a FizzlePop. This too matches with the requirements.

By continuing a variety of such scenarios, the student verifies that the sequential
circuit is behaving as required. Finally, the student prints the circuit to be included
in a lab report outlining the design process and the final circuit design.

5. LIMITATIONS AND FUTURE PLANS

One of Logisim’s limitations derives from its use of the Java Virtual Machine. While
this enables Logisim to work on a variety of platforms, it complicates both installing

ACM Journal Name, Vol. 2, No. 1, March 2002.

10 . Carl Burch

— - [Logisim: main .o x — - [Logisim: main - O X
Flle Edit Project Options Help File Edit Project Options Help

Hx [[A] D [O[EEe[r] [Dlemess -] @l []A] ClP]A[EE] o] [Qlemmese -]

(a) Deposit nickel (b) Deposit dime
Fig. 7. Testing behavior of FizzlePop controller circuit.

and starting the program. Locally, we have set up simple scripts on our Windows
and Unix computers so that students can easily start the programs, so this is not
an issue in our laboratories. But it does complicate Logisim’s use for students on
their home computers and for those at other institutions.

Also, the program’s construction pays little attention to efficiency details. Some
sluggishness can appear. For example, in running the CPU of Figure 4 on a recently
purchased Sun workstation, Logisim delayed a full second after each toggle of the
clock switch. But for circuits of a moderate size, the delay is hardly perceptible.
We have not noticed any problems with efficiency in our laboratory assignments.

But perhaps Logisim’s biggest limitation is in its feature set. While Logisim is
far more powerful than needed for lower-division courses in which logic circuits are
a small part, an upper-division architecture course would stretch it to its limits.
Logisim could still prove useful in such a course — and, compared to most other free
graphical tools, it is much more suitable. But some topics could not be addressed
using Logisim. For example, Logisim provides minimal or no support for buses,
circuit timing, and circuit layout issues.

Possible additions to Logisim in future versions include the following.

— Logisim should have a clock device.

— All of Logisim’s components appear in a fixed orientation. It should enable
the rotation of components.

— Logisim might permit the user to define the appearance of a subcircuit when
it appears in another circuit. Currently, it appears simply as a rectangle resembling
an IC chip.

— Each pin between a subcircuit and its surrounding circuit is currently one-
way: Values will flow either into the subcircuit or out of the subcircuit. Pins on
more sophisticated IC chips often are two-way, acting as an input or an output
based on other pins’ inputs. Logisim does not currently support this.

— Currently, a circuit can use only subcircuits defined within the same file. It
would be nice if Logisim allowed the ability to use components defined in other
files, permitting the creation of libraries of Logisim components.

ACM Journal Name, Vol. 2, No. 1, March 2002.

Logisim . 11

— Logisim might define a Java API for defining new circuit components, allowing
others to define new custom components in Java, which may then appear in circuits
within Logisim. For example, the CPU of Figure 4 uses a custom component to
represent a 32-byte memory, a custom-written component not available through
the interface. In addition, users should be able to bundle such files into a JAR file.

— Logisim does not permit the bundling of wires. This makes the prospect of
developing a circuit for dealing with wide units of data impractical. Thus, the
author could certainly not recommend using Logisim to illustrate circuits working
with even 16-bit data. The eight-bit CPU illustrated in Figure 4 is nearly as
complex a circuit as Logisim can conveniently handle.

These are merely possibilities for future development. Logisim currently runs
without problems, and these features are well beyond the needs of the courses we
regularly teach at CSB|SJU. If, however, feedback indicates that Logisim is proving
useful, the author would welcome the opportunity to extend its capabilities further.

Logisim is currently in heavy use at CSB|SJU; about 125 of our students learn
using the program each semester. The simple sophistication of such a tool enables
students to practice more concepts from class than previously possible, with imme-
diate feedback. Our experience indicates that graphical design and simulation of
digital logic circuits, and particularly Logisim, aids student learning in a variety of
lower-division courses. Students have reacted positively, and Logisim has become
a valuable tool throughout our curriculum.

ACKNOWLEDGMENTS

The author would like to thank Prof J Andrew Holey, who patiently endured many
of the bugs of early versions of Logisim deployed in his classroom and suggested
many of its features. The author also acknowledges the helpful referees, whose rec-
ommendations concerning possible additions to this paper improved it considerably.

REFERENCES

ARASE, K. 2000. Simcir. http://www.tt.rim.or.jp/ kazz/simcir.

BOOTHE, B. 1999. Probe. http://www.scit.wlv.ac.uk/~cm1970/probe/webpage/.

1999. Logic Works. Capilano Computing Systems Ltd., http://www.logicworks4.com/.

2001. DesignWorks. Capilano Computing Systems Ltd., http://www.designworks4.com/.

CRAIG, D. 1997. DigiTCL. http://www.cs.mun.ca/ donald/digitcl/.

Eck, D. 2000. zLogicCircuits. http://math.hws.edu/ TMCM /java/xLogicCircuits/index.html.

2001. Logic Simulator. Gordon College, http://www.cs.gordon.edu/courses/cs111/module7/logic-
sim/examplel.html.

HERz, A. 1998. Digital Simulator. http://www.ttl-simulator.de/.

KARWEIT, A. 2000. Circuit Builder. Johns Hopkins University,
http://www.jhu.edu/"virtlab/logic/logic.htm.

KNAIAN, A. 1994. Digital Simulator. http://web.mit.edu/ara/www/ds.html.

MASSON, A. 1996. LogicSim. http://wuarchive.wustl.edu/edu/math/software/mac/logic/LogicSim/.

2001. Digital Works. Mecanique, http://www.mecanique.co.uk/digital-works/.

MILLER, E. AND SQUIRE, J. 2000. esim: A structural design language and simulator for architecture
education. In Workshop on Computer Architecture Education. 42—48.

2001. FEasySim. Research Systems Pty. Ltd., http://www.research-systems.com/.

1997. Multimedia Logic. Softronics, Inc., http://www.softronix.com/logic.html.

TETZL, A. 2001. LogicSim. http://www.tetzl.de/.

ACM Journal Name, Vol. 2, No. 1, March 2002.

12 . Carl Burch

VAN RIENEN, I. 1996. DigSim. http://www.iwans.net.

WOLFFE, G., YURCIK, W., OSBORNE, H., AND HOLLIDAY, M. 2002. Teaching computer organiza-

tion with limited resources using simulators. In SIGCSE Technical Symposium on Computer
Science Education.

ZIDAR, F. 2001. Digital Circuit Simulator. http://www.rocketdownload.com/Details/Home/925.htm.

Received October 2001; accepted February 2002

ACM Journal Name, Vol. 2, No. 1, March 2002.

