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Abstract

We present a randomized on-line algorithm for the Metrical Task System problem that achieves a
competitive ratio of 	�

����������� against an oblivious adversary, on any metric space. This is the first
algorithm to achieve a sublinear competitive ratio for all metric spaces. Our algorithm uses a recent
result of Bartal [Bar96] that an arbitrary metric space can be probabilistically approximated by a set of
metric spaces called “ � -hierarchical well-separated trees” ( � -HST’s). Indeed, the main technical result
of this paper is an 	�

����������� -competitive algorithm for ��

����������� -HST spaces. This, combined with the
result of [Bar96], yields the general bound.

Note that for the � -server problem on metric spaces of ��� � points our result implies a competitive
ratio of 	!
"� � ����� � ��� .

1 Introduction

The Metrical Task System (MTS) problem, introduced by Borodin, Linial, and Saks [BLS92], can be stated
as follows. Consider a machine that can be in one of # states or configurations. This machine is given a
sequence of tasks, where each task has an associated cost vector specifying the cost of performing the task
in each state of the machine. There is also a distance metric among the machine’s states specifying the cost
of moving from one configuration to another. Given a new task, an algorithm chooses either to process the
task in the current state (paying the amount specified in the cost vector) or to move to a new state and process
the task there (paying both the movement cost and the amount specified in the cost vector for the new state).
The problem is to decide on-line what action to take.

A natural way to measure the performance of an on-line algorithm for this problem is the competitive ratio.
Let $&%('*),+ represent the cost incurred by an algorithm - on task sequence ) . An on-line algorithm - has a
competitive ratio of . if, for some / , for all task sequences ) ,

$&%('0),+�12.435$�687,9:'0);+=<>/
where ?�@BA represents the optimal off-line algorithm. That is, $ 6C7;9 '0),+ is the optimal cost, in hindsight, of
processing task sequence ) .D
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For randomized algorithms, we replace the cost to - by its expected cost; this is sometimes called the
“oblivious adversary” measure since the tasks can be viewed as generated by an adversary that produces
the task sequence before any of - ’s random choices. Specifically, we say that randomized algorithm - has
competitive ratio . if, for some / , for all ) ,

��� $&%:'0),+�� 12. 3�$�687,9:'0);+=<>/
Borodin, Linial, and Saks [BLS92] present a deterministic on-line MTS algorithm that for any metric space
achieves a competitive ratio of � #��	� and prove that this is optimal for deterministic algorithms (in a strong
sense: namely, there is no metric space for which a deterministic algorithm can guarantee a better ratio).
They also show that for the special case of the uniform metric space, one can achieve a competitive ratio of
 '���
��(# + with randomization. Several papers have since presented randomized algorithms for other special
metric spaces, such as an


 '���
��(# + -competitive algorithm for “highly unbalanced” spaces [BKRS92], and

an

 '���� ���������������������C+ -competitive algorithm for equally-spaced points on the line [BRS91, FK90]. Irani

and Seiden [IS95] present a randomized algorithm that for arbitrary spaces achieves a competitive ratio of
roughly ��� ��!�# .

Two types of lower bounds are known for randomized MTS algorithms. For certain specific metric spaces
such as the uniform space [BLS92], and the superincreasing space [KRR91], there are " '���
��(# + bounds
on the competitive ratio of any randomized on-line algorithm. More generally, a weaker lower bound of
" '���
��#��
��(# + [KRR91], subsequently improved to " '�$ ��
��(#&%'��
��(��
��(#;+ [BKRS92], applies to every metric
space. A long-standing conjecture maintains that the correct answer is ) '���
���#=+ : that is, an on-line algorithm
exists with competitive ratio


 '���
���# + for every metric space, and there is no metric space for which one can
guarantee *�'���
��(# + .

1.1 The + -HST approximation

Recently, Bartal [Bar96] made important progress by reducing the problem on general metric spaces to the
problem on one particular type of space. He defines the following notion.

Definition 1 ( , -HST) A , -hierarchical well-separated tree ( , -HST) is a rooted tree with the following prop-
erties.

- The edge lengths on any path from the root to a leaf decrease by a factor of at least , .

- For any node, the lengths of the edges to its children are all equal.

The metric space induced by a , -HST has one point for each leaf of the tree, with distances given by the
tree’s path lengths.

For example, a metric space consisting of three “clusters” where the distance between any two points in the
same cluster is 1 and the distance between any two points in different clusters is , <.� would be a , -HST
space. If we add a new point at distance / from all the rest, the metric space remains a , -HST space so long
as /102,43 <5,4%���<6�7%�� .

Bartal shows how to approximate an arbitrary metric space 8 by a probability distribution over a set of
, -HST spaces. (The reader may find it easier to think of this as a randomized hierarchical decomposition of
the metric space 8 .) This approximation results in the following theorem.
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Theorem 1 ([Bar96]) Suppose there is an algorithm whose competitive ratio is . on any metric space
induced by an # -leaf , -HST. Then there is a randomized algorithm for general # -node metric spaces that
achieves a competitive ratio of 
 '0. , ��
���# ��
�� �������	� #�

��� +
where � is the diameter of the metric space (assuming the minimum non-zero distance in the space is 1).

Theorem 1 invites developing strategies for a , -HST. Bartal [Bar96] does this using a variant of the the

marking algorithm [FKL � 91] and achieves a competitive ratio of ����� � ��������������� ����� ��� ��������� � for general met-
ric spaces. For metric spaces of poly '0# + diameter (such as shortest-path metrics on unweighted graphs), the
ratio is sublinear in # ; this is the first sublinear bound known for such spaces.

Our paper improves on this bound in two ways. First, we bring the ratio into the polylogarithmic range, and,
second, we remove dependence on � . Specifically, we achieve a competitive ratio of


 '���
����,#&% ��
��#��
��(# +
on all metric spaces.

Our presentation begins in Section 2 with a description of an on-line problem that will be useful in recur-
sively constructing an algorithm for the , -HST. Section 3 presents and analyzes a strategy for this problem
that produces a good solution for balanced " '���
�� 3 # + -HST’s. Section 4 describes a strategy that can be used
for unbalanced " '���
�� 3 # + -HST’s whose branching factor is just two. Section 5 combines these two strate-
gies into a strategy that achieves an


 '���
�� 3 # + competitive ratio for any " '���
�� 3 #=+ -HST, giving this paper’s
primary result of a


 '���
�� � #&% ��
��(��
���# + -competitive algorithm for arbitrary metric spaces. Sections 6 and 7
discuss other implications. Section 6 gives better competitive ratios for special classes of graphs, and Sec-
tion 7 explains an on-line strategy for combining other on-line strategies so that we do nearly as well as the
best of them.

2 Definitions, preliminaries, and intuition

Because the adversary is oblivious, we can view the MTS problem as follows. The on-line algorithm main-
tains a probability distribution '�����
�� 3 
7� �7� 
!� � + over the # points in the metric space. Given a task, the
algorithm may modify this distribution, paying a cost � / to move � units of probability a distance / . If the
algorithm’s resulting distribution is '��#" � 
!��" 3 
7�7� � 
��$" � + and the task vector is '&%'�(
)% 3 
 �7�7�*

% � + , then the algorithm
pays a cost +-,
� ", % , to service the task.

One simplification we will make is to assume that each task vector is elementary. That is, every task vector
has only one non-zero element. It is a folklore result that this can be assumed without loss of generality (a
proof is in the Appendix). We will represent the elementary task with cost % in state . by the pair '&.*

% + .
A second simplifying assumption we can make is the following.

Assumption 1 When a task '&. 
)% + is received that causes the on-line algorithm to remove all probability
from point . , we may assume that % is the least value causing the algorithm to do so. Similarly, we can
assume the algorithm never receives a task '&.*

% + when � , is already 0.

This assumption is made without loss of generality since reducing the value of % to the minimum that results
in � ,0/21 does not affect the on-line cost (the on-line player pays only the movement cost) and does not
increase the optimal off-line cost. The purpose of this assumption is just to simplify the description of the
algorithm, allowing its probability distribution to be solely a function of the “work function” (see below).
Alternatively, this assumption can be viewed as a preprocessor to the algorithm.

For a point . in the metric space, let 3 , denote the optimal off-line cost of ending in state . after servicing
all tasks so far. (This is sometimes called the work function [CL91].) Given a task '4. 

% + , the value of 305 for
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���/ . does not change, and 3 , becomes �����	� 3 , < % 
 � � � 5��� , 3 5 <2/ , 5 � , where / , 5 is the distance between .
and

�
. One can see the latter by noticing that there are two ways the algorithm could end at state . after the

task '4. 

% + . The off-line algorithm could have already been at . , so that the cumulative cost would be 3 , < % .
Or it could have moved from some state

�
to avoid the % charge, at a cumulative cost of 3 5 <2/ 5 , .

The algorithms we consider will have the property that their distribution of probabilities '����(
 �7� � 
�� � + is a
function of the 3 values. We call such an algorithm 3 -based. We will say such an algorithm is reasonable
if it has the property that � , is zero when there exists a state

�
such that 3 , / 3 5 <./ , 5 . Notice that an

unreasonable 3 -based algorithm has an unbounded competitive ratio.

Assumption 1 immediately implies the following.

Lemma 1 For a reasonable 3 -based on-line algorithm, we may assume that for each request '4. 

% + , 3 ,
increases by % .

Proof. Say we get a request '&.*

% + for which 3 , increases by % "�� % . This can only mean that for some
�

,
3 , / 3 5 < / , 5 � % " before the request and 3 , becomes 3 5 <6/ , 5 after the request. But the request '4. 

% " +
would have produced the same result and, since the algorithm is reasonable, would also result in � ,0/ 1 .
This contradicts Assumption 1.

The algorithms we combine recursively will be even more than reasonable: they will be hierarchically rea-
sonable. Suppose the metric space 8 is partitioned into � subspaces 8 � 
 �7�7� 
 8
	 , and algorithm - partitions
its probability mass over sub-algorithms - �(
 �7� � 
 -�	 running on each subspace. We say - is hierarchically
reasonable if, when there exist two states . and

�
in different subspaces such that 3 ,�/ 3 5 < / , 5 , - assigns

probability zero to the entire subspace containing point . . This property, combined with Assumption 1,
ensures that the algorithm will be reasonable even if each sub-algorithm behaves independently of the 3
values of points in other subspaces.

2.1 Modeling a + -HST’s recursive structure

A , -HST metric space can be understood as a collection of metric spaces separated by some large distance
� , where each metric space is a smaller , -HST space with diameter at most � %�, . It is natural, then, to
attempt to solve the MTS problem on a , -HST with a recursive algorithm that combines sub-algorithms for
the subspaces into an algorithm for the entire space. Say each sub-algorithm is . -competitive. In this case,
the problem of combining the sub-algorithms is roughly abstracted by the following scenario.

Scenario 0 We have an MTS problem on a uniform metric space of � states, but with the following change:
when the on-line algorithm services a task, it must pay . times the cost specified in the task vector; the off-
line algorithm, however, only incurs the cost specified. In other words, the on-line and off-line algorithms
are charged equally for movement, but the on-line algorithm is charged . times more for servicing tasks.

Because this scenario is a generalization of the MTS problem on a uniform metric space, one natural al-
gorithm to apply is the well-known Marking Algorithm. This algorithm will achieve a competitive ratio of
 '*.���
����5+ for Scenario 0. One main result in this paper (Section 3) is an algorithm that improves this ratio
to . < 
 '���
����5+ . This is interesting in itself (see Section 7) and also suggests that applying the algorithm
recursively should achieve a ratio of


 '���
���#=+ on a balanced , -HST.
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2.2 Some complications

Unfortunately, Scenario 0 is too simplistic even for modeling balanced trees. The main problem is that,
because the sub-algorithms’ ratios are amortized, an . -competitive algorithm for a subspace may pay more
than . times the off-line cost for servicing any given request.

To get a handle on this and related issues, it will be helpful to make one additional definition. Notice that
the optimal off-line cost is � � � , 3 , . Since, however, the 3 , values differ from each other by at most the
diameter of the space, it is legitimate for the on-line algorithm to compete against any one, or even a convex
combination �3 , of these values. We will say that algorithm - achieves competitive ratio . with potential
function

�
against convex combination �3 (assume

�
is non-negative and bounded) if for every task � ,

$&%�'�� +;< � � 12.43 ���3
where � �

and ���3 represent the changes in
�

and �3 for the task.

Why is this definition useful? Suppose the . -competitive algorithm for subspace . has potential function
� ,

and competes against the convex combination �3 , . Consider the potential function + , � , � , for the global
algorithm (� , is the total probability in subspace . ). Say the on-line algorithm receives a task causing �3 ,
to increase by % , and as a result the global algorithm moves probability � a distance / from subspace . to
subspace

�
before servicing the task. Then the cost plus potential change incurred by the global algorithm is

just � /�< � ' � 5 � � , +�< ��", . % , where ��", / � , � � . In other words, we can ignore the internal amortizations at
the expense of an additional cost for movement, where this additional cost is at most � times the maximum
value of

� 5 .
The concept of paying more than the off-line player for movement motivates adding a distance ratio to the
scenario. We add this, and account for differences in subspaces’ sizes, in the following, more careful version
of Scenario 0.

Scenario 1 As before, there are � regions. Each pair of regions is separated by a distance / . Associated
with the regions are cost ratios . � 02. 3 0 3�3�3�02. 	 , and with the distance is associated a distance ratio � .

Suppose the on-line algorithm has � , probability on region . when it receives a request '&. 
)%�+ . In reaction to
the request, the algorithm moves some probability from . , leaving � ", behind. Then the on-line algorithm’s
cost for the request is �#", . , %�< '�� , � ��", +��7/ .

The off-line player, on the other hand, pays only % for servicing '&.*

% + in region . and only / when it moves
between regions.

This scenario is a generalization of the aptly named “unfair two state problem” of Seiden [Sei96].

While the primary goal in developing algorithms for this scenario is to optimize the competitive ratio, our
secondary goal is to limit the maximum value of the potential function used by the algorithm. This is
because, as suggested earlier, if a potential’s maximum is large, the distance ratio � will also be large at the
next higher level of the recursion used in solving for the , -HST.

3 Combining equal-ratio regions

3.1 Strategy

We develop two new strategies for Scenario 1. The first will loosely approximate all the cost ratios by . � .
The second will handle different ratios more carefully but it will only apply when � / � . We will then
combine these to construct an algorithm for the , -HST.
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The first strategy will take an odd integer parameter � , which we will later choose to be

 '���
��(# + .

Strategy 1 The strategy takes an odd integer � as a parameter. We allocate to region
�

the probability

� 5 / �
� <

�
�

	�
, � �

� 3 , � 3 5
/ ��� (1)

For two regions with equal cost ratios, Strategy 1 with � / � is equivalent to that of Blum, Karloff, Rabani,
and Saks [BKRS92]. The following lemma tells us that Strategy 1 fulfills the basic properties described in
the previous section.

Lemma 2 Strategy 1 is 3 -based, legal (that is, + 5 � 5 / � and each � 5 is nonnegative), and reasonable.

Proof. That the strategy is 3 -based is obvious. It maintains a legal probability distribution because, since
� is odd, + 5 + , '����
	��
�� + � / 1 . Because � 5 is a decreasing function of only 3 5 among the 3 values, As-
sumption 1 implies that each � 5 remains non-negative. (Requests to . �/ �

will only increase � 5 . Say we
receive a request ' � 

% + that would make � 5 negative if 3 5 increased by % . Since the distribution (Equation 1)
is continuous, there is an % " � % for which the algorithm sets ��5 to be zero. Assumption 1 implies that we
can use ' � 

% "�+ instead so that � 5 becomes exactly zero.)

Why is Strategy 1 reasonable? Say that 3 5 / 3 � <2/ . Consider the following term from Equation 1.

	�
, � �

� 3 , � 3 5
/ ���

The , th term of the summation is ' � ��+ � / � � . And the . th term of the summation is at most zero for . �/ , ,
since 3 , 1 3 � <2/ / 3 5 . So the summation is at most � � , and � 5 is at most zero.

In the remainder of this section we will analyze the strategy’s performance and find that its amortized
competitive ratio is at most . � <2� � � ��� � � . We will then bound the potential used in the analysis. Finally, we
will examine how this strategy performs alone on a , -HST and find that it gives polylog '0# + performance for
metric spaces of poly '0# + diameter.

3.2 Performance

To analyze the performance we will require a simple general lemma.

Lemma 3 Consider # nonnegative reals ���(
 �7�7�*
�� � and two positive integers � � � . If + , � �, 1 � , then
+ , ���, 12# � � 	 � � � � .
This lemma, presented here without proof, is not difficult to understand. The value of + , � �, is maximum
when all the terms are equal.

Lemma 4 The competitive ratio of Strategy 1 is at most . � <2� � � ��� � � . For � being roughly ����# , the ratio is
roughly . � <��(���:# .

Proof. We will use two potential functions
���

and
���

. The potential function
���

will amortize the local
cost within each region.

��� / . � /
��'�� <6��+ �

	�
, � �

	�
5 � �

� 3 , � 3 5
/ � � � �
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Notice that
� �

has the property that, for any
�

,� ���
� 3 5 / �

�
� 5 � �

� � . � (2)

The other potential,
���

, will amortize the movement cost between regions.

��� / � /
� �

	�
, � �

	�
5 � �

���� 3
, � 3 5

/
���� �

The potential
�

for the strategy is simply
��� < ���

.

We will show that the algorithm’s local cost is at most . � times the off-line cost and that for movement the
algorithm pays at most � � � ��� � � times the off-line cost. This will yield the desired bound.

Justified by Lemma 1, we assume that, for a request '�, 
)% + , 3 � increases from some value � to ��< % . In this
analysis the strategy will compete against the average 3 value, + 3 , % � . So the off-line cost is % % � .
Let � � and � " � represent the probability in region , before and after the task vector, and let

� �
(
� �

) and
� "�

(
� "� ) represent the local (movement) potential before and after the task vector. Then the on-line strategy’s

cost will be
� " � . � %�< '�� � � � " � +�� /�< � "� < � "� � ��� � ���

Because � � decreases as a function of 3 � , we can upper-bound this cost using an integral.
��� ���
�

�
� � . � <

� � �
� 3 � �

� � �� 3 � � / <
� � �
� 3 � � / 3 � (3)

We will examine the first two terms, representing the local cost, and the last two terms, representing the
movement cost, separately. For the local cost, we have (using Equation 2)

� � . � <
� ���
� 3 � / � � . � � '�� � � �

� + . � / . �
�

(4)

Thus the total local cost, ��� ���
�

�
� � . � <

� ���
� 3 � � / 3 � 


is at most % . � % � , which is . � times the off-line cost as desired.

Analyzing the movement cost requires more work.

�
� � �� 3 � �7/4<

� � �
� 3 �

/ � �
�
�
, �� �

� 3 , � 3 �
/ � � 	 � < � �

�
�
���	����


� 3 � � 3 ,
/ � � 	 �

� � �
�

�
���	����


� 3 , � 3 �
/ ��� 	 �

/ � � �
�

�
���
� ��


� 3 � � 3 ,
/ � � 	 � (5)

We would like to simplify the summation. Say that 3�� is currently the maximum 3 value. Observe using
the probability allocation (Equation 1) that, since ��� is not negative, the following holds.�

, �� �
� 3�� � 3 ,

/ � � 1 � (6)
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Because 3 � is maximum, each term of the summation is positive. Thus it follows from Lemma 3 that�
, �� �

� 3�� � 3 ,
/ � � 	 � 1 ' �(�2��+ ��� � � � ��� �

Using the definition of / again we can continue from Equation 5 to finish approximating the movement cost.

� � �
�

�
��� ����


� 3 � � 3 ,
/ � � 	 � 1 � � �

�
�
, �� �

� 3�� � 3 ,
/ � � 	 �

� � � � ��� � �� (7)

The estimates of the local cost (4) and movement cost (7) bound the total cost (3) by

� ��
 ���� 

�
� � . � <

� � �
� 3 � <

� � �� 3 � �7/4<
� � �
� 3 � � / 3 �

1
� ��
 ���� 
 . �,<2� � � ��� � �� / 3 �

/ %
� '*. �,<2� � � ��� � � +

So the competitive ratio is .��,< � � � ��� � � as desired.

As Lemma 4 states, if we let � be at least ����� , then � ��� � is at most 2, so the ratio is . �:< � � � . Since we
approximate � ��� � in exactly this way, why would we ever want � to increase beyond ����� ? A larger exponent
� implies that the maximum potential is smaller.

3.3 Potential

To apply Strategy 1 recursively on a , -HST, we must bound the potential.

Lemma 5 The potential in Lemma 4 is bounded by

1 1 � 1
� . �
�,<6� < � � /

Proof. The lower bound is trivial. Let us concern ourselves with the upper bound, bounding
� �

and
� �

separately. To bound
���

, let / be the index of the maximum 3 value.

��� / . ��/
��'�� <6��+ �

�
,
�
5

� 3 , � 3 5
/ ��� � �

/ . � /
'�� <6��+ �

�
,

�
�
� �����

� 3 , � 3 5
/ ��� � �

1 . � /
'�� <6��+ �

�
,

�
�
� �����

� 3�� � 3 5
/ ��� � �

1 . � /
�=< �

�
5

� 3 � � 3 5
/ � � � �
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1 . ��/
�=< �

�
5

� 3�� � 3 5
/ � � (8)

1 . ��/
�=< � (9)

Inequality 8 follows because, since 3 � 1 3 5 < / , each term of the summation is at most one, so reducing
the term’s exponent increases the term’s value. Inequality 9 comes from Inequality 6.

Bounding
� �

is similar. Again, let / be the index of the maximum 3 value.

� � / � /
� �

�
,
�
5

���� 3
, � 3 5

/
���� �

/ � /
�
�
,

�
�
� �����

� 3 , � 3 5
/ � �

1 � /
�
�
,

�
�
� �����

� 3�� � 3 5
/ ���

1 � / �
5

� 3�� � 3 5
/ � �

1 � /
Adding this to the bound for

���
(9) gives a bound for the total potential of Strategy 1.

� / ��� < ��� 1 � . �
�,<6� < � � /

This is as promised.

3.4 Recursive application

With the strategy’s performance and potential bounded we can quickly look at how the strategy performs by
itself on , -HST’s. While this analysis is not necessary for the final result, seeing a simpler strategy applied
to a , -HST will make the later presentation clearer. It will also suggest why this strategy alone is not enough
to get a bound polylogarithmic in # .

First, let us formalize the argument that a recursive algorithm can ignore sub-algorithms’ potentials by
increasing the distance ratio. Say the algorithm receives a task whose non-zero component is in region . .
The sub-algorithm for the region has amortized ratio . , , so the amortized local cost for being in that region
is . , % . We are interested in its true cost, however. This is . , %#� ' � ", � � , + if

� , and
� ", respectively represent

the sub-algorithm’s potential before and after the request.

Lemma 6 Consider a version of Scenario 1 where cost ratios are amortized with potentials bounded by�
����� . That is, requests to region . cost not � , . , % but � , '0. , %�� ' � ", � � , + + . Let - be an . -competitive

algorithm for the original Scenario 1 whose distance ratio is
�
��< � ����� %�/ . Then there exists an . -competitive

algorithm
�- for the scenario with amortized ratios and distance ratio

�
� . The potential of

�- is at most
�
�����

plus the potential of - .

Proof. In
�- we allocate probability as in - . Let

� % be the potential of - . The potential of
�- will be

���% / � % <
	�

5 � �
� 5 � 5
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That this is at most
� % < �

� � � is clear.

Say
�- receives a request '&.*

% + . It acts as - would with this request, leaving � ", � � , probability on region

. . The amortized cost to
�- for processing the request can be split into two pieces. First we will move

probability. Movement costs us

'�� , � � ", + ��7/�<
	�

5 � �
� "5 � 5 �

	�
5 � �

� 5 � 5

1 '�� , � � ", + ��7/ �2'�� , � � ", + � , <
	�

5��� ,
'�� "5 � � 5 + � � ���

/ '�� , � � ",0+ ��7/ �2'�� , � � ",0+ � , < '�� , � � ",0+ � �����
1 '�� , � � ", +�' �� < �

� � � %�/8+�/
After we move probability, we pay the amortized cost ratio. (Notice that

� 5 remains unchanged for
� �/ . ,

since nothing has changed in that region.) This cost is

� ", '*. , % � � ", < � , +,< � ", ' � ", � � , +,< � "% � � % / � ", . , %�< � "% � � %
So the total cost to

�- is
� ", . , %�< '�� , � � ",0+�' �� < �

����� %�/8+�/�< � "% � � %
Since this is the amortized cost to - and the off-line cost is the same in both cases,

�- is . -competitive.

Now we can examine applying Strategy 1 to a , -HST.

Lemma 7 Consider an # -point metric space induced by a , -HST of depth
�

with , 0�� � . The competitive
ratio of applying Strategy 1 with ����# 1 ���2���(# <2� is at most � � ��� # .

Corollary 8 There is a randomized algorithm for the MTS problem with competitive ratio


 '���
�� � # ��
�� 3 � % ��
�� � ��
��0� +
Proof. Choose , to be �7! ��� � %'���#��� � . Then the depth of the , -HST is at most ��
�� � � �5,4%�� . This choice
satisfies the conditions of the Lemma 7. Applying Theorem 1 gives the result.

Proof of Lemma 7. We will use induction on
�

to show that Strategy 1 on a
�

-depth , -HST (with ,10�� �
and diameter � ) has a competitive ratio of � � ��� # with maximum potential � � � . This is clearly true when�

is zero.

For the induction step, we see that the diameter of each subspace is at most � %�, , and the depth of each is
at most

� � � . So the strategy for each subspace has a competitive ratio of at most ��' � � ��+4���:# and a
potential of at most ��' � �2��+*� %�, .

If we were to simply apply Strategy 1 with / / � , the strategy would not be hierarchically reasonable.
Consider a node # , in subspace � , whose 3 value is 3 � � and a node # 5 in subspace � 5 with 3 value
3 � � . We need the probability on # , to be zero if 3 � � / 3 � � < � . Because the strategy for � 5 uses a
convex combination of the 3 values, however, the 3 5 that Strategy 1 sees may be as much as 3 � � < � %�, .
Meanwhile, the internal node may see 3 , as small as 3 � � � � %�, . So the difference of 3 , and 3 5 may be
only � �5��� %�, . That they differ by less than � implies that the strategy may allocate probability to � 5 .
Unaware of even the existence of # , , � 5 may allocate some of this probability to # 5 , which we must avoid.

10



One solution to this problem is the following. We will set / to be � �6��� %�, while setting the distance
ratio

�
� to be ,4%�'�, �6��+ to keep

�
�7/ at the true distance between subspaces, � . This reduces the off-line

player’s distance cost, hurting the strategy’s ratio slightly. But these parameters guarantee that the strategy
is hierarchically reasonable.

The other issue we must consider is internal potentials. We can apply Lemma 6 to take care of this. Since
, 0 � � , the maximum potential of each subspace ( ��' � �6��+ � %�, ) is at most / . So we can use a distance
ratio of

�
� < ��1���% � (because , 0 � 1 ).

To calculate the competitive ratio for the , -HST, we use Lemma 4.

. � <2� � � ��� � ��1���' � � ��+ ���:# <�� ���(# / � � ���(#
(We bound � ��� � by two because � 0 ��� � .) Lemmas 5 and 6 bound the potential.� . �

� < � < � � � <���' � �5��+ � ,
1

� ��' � �2��+4���(#
����# < � �� � �

1 � � �
These two bounds satisfy the induction.

Notice that this ratio is polylogarithmic in # for poly '0# + -diameter graphs. This is already an improvement
on the result of [Bar96]. In the remainder of this paper, we show how to achieve a ratio polylogarithmic in
# only, without restricting the class of metric spaces in any way.

4 Combining two regions

4.1 Strategy

We wish to remove the appearance of � in the ratio. The diameter appeared when we bounded the depth of
the tree by ��
�� � � . This occurs; for example, consider a , -HST decomposition of a superincreasing metric
space, where the points lie on a line at ��
 , 
 , 3 
7� �7� ,�� . In such a tree, however, many internal nodes have a
subtree much larger than any of its siblings. This motivates the following idea: if one subtree is much larger
than the remaining ��� � combined, then we will use Strategy 1 on the ��� � smaller trees, and then carefully
combine the result with the larger one. To do this, we need a method for carefully combining two spaces of
unequal ratios.

In this section we consider this problem of carefully combining two regions. For � / � , the problem
is one examined by Blum, Karloff, Rabani, and Saks [BKRS92]. (They were concerned with a metric
space consisting of two spaces separated by a large distance. That paper was able to ignore the internal
potential functions and additive constants by assuming the two spaces were sufficiently far apart. Because
we cannot afford to assume the spaces are so separated, we must be more careful and introduce ��� � .) By
appropriately modifying the technique used in that paper, we get a strategy for Scenario 1 with two regions.
(Seiden [Sei96] independently developed the same algorithm. We present it here for completeness.)

Strategy 2 Let �	��' �8+ be the following function.

�	� ' �8+ / �����
	��
�� � � ���
	��
�� ' �� � �
��� +

� ��� � 	 � � � � � �5� (10)
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When � / � in Scenario 1, the strategy places � � '43 � � 3 3 + probability in the first region and the rest in the
second.

While the strategy is hardly intuitive, the analysis will make the reason for the selection clear.

4.2 Performance

Lemma 9 The competitive ratio of Strategy 2 is

. �,< . � � . 3� � � � 	 � � � � � �5�
The potential of the strategy never exceeds '�� . 3 < � +�/
Proof. Notice that the strategy is 3 -based. Because � � '�/8+ / 1 and � ��' � /8+ / � , it is legal and reasonable.

Our analysis will compete against 3 � . This means that the cost must be zero when 3 3 increases, so these
costs will be absorbed by the potential. Our potential, therefore, is

� / ' � � �	� +�� / <
� � � 	�� �	 � ' � � � � '	�C+ + . 3 / �

Because 3 � � 3 3 is always at least � / , this potential is nonnegative. And because the integrand is at most
. 3 , the second term is at most ��. 3 / , while the first term is at most �7/ . So the potential is bounded by� 1 '�� . 3 < ��+ / .

A request ' ��

% + will be absorbed completely by the potential. Let us consider a request ' ��

% + bringing
3 � � 3 3 from � to � < % . Then, the strategy’s cost is at most

��� � �
�

�
� ��' �8+ . � � �7/ / �	�

/ � <
/ �
/ ��� / �

1
� � ���
�

�
� ��'	�C+ . � � � �7/ / � �

/ � < ' � � �	��' �C+ + . 3 � / �
(The integral approximates the cost because ��� is a decreasing function.) By setting this to a constant we
obtain a first-order differential equation in � � , which can be solved with the boundary conditions ����'�/8+ / 1
and � ��' � /8+ / � . It is easy to verify that if �	� is as in Equation 10, the integrand is constant.

� � � �
�

�
� ��' �8+ . � � � �7/ / � �

/ � < ' � � � ��' �8+ + . 3 � / �

/
� � ���
�

. �,< . � ��. 3� ��� � 	 � � � � � �5� / �
/

�
. � < . �(� . 3� � � � 	 � � � � � �2� � %

Since the off-line player pays % , the competitive ratio for the strategy is as advertised.

5 Combining the strategies on a
�
-HST

5.1 Strategy

Our strategy combines Strategy 2 with Strategy 1 at internal nodes of the , -HST where, roughly, the first
subtree contains a disproportionate number of nodes.
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Strategy 3 Consider an internal node of a , -HST space whose � subspaces have ratios . � 0 . 3 0 3�3 3 02. 	 .
The . th subtree contains # , nodes. Let # represent + 	, � � # , .
Our strategy for the node will be the following.

1. If . � 1 �7��! ��� 3 # � � �'����# , we use Strategy 1 with � an odd integer between �'����# and � ����# <2� .

2. If . � � �7��! ��� 3 # � � � ����# , we combine all but the first subspace using Strategy 1 with � ����# 1 �41
� ���:# <2� . Then we use Strategy 2 to combine this with the first subspace.

In the analysis we will determine acceptable values to use for , , � , and / .

5.2 Performance

We will show that the strategy is

 '���
�� 3 # + -competitive on an " '���
�� 3 # + -HST using induction. The follow-

ing lemma allows us to combine subspaces with Strategy 1.

Lemma 10 Consider a , -HST with diameter � . Say that we have a strategy for each subspace with com-
petitive ratio . , 1 �7��! ��� 3 # , and maximum potential ' '�, �	��+�%���+*� %�, . To combine the subspaces, we apply
Strategy 1 with � ����# 1 � 1 � ���(# < � , / / ' '�, � ��+ %���,�+ � , and � / ��,4%�'�, � ��+ <.� . Then the total
competitive ratio is at most .�� < � �'���(# and the maximum potential is at most '�� �(���:# < ����% �C+�' ' , � ��+ %���,�+ � .

Proof. Let
�
� be ��,4%�' ,1�2��+ so that in paying

�
� / to move between subspaces the on-line strategy pays � .

Because the potential for each subspace is at most / , we can avoid the potentials through Lemma 6 if the
distance ratio � is

�
� < � . This is at most � � % � if , 0 �7! . Because � 0 ��� � , � ��� � is at most � , so Lemma 4

gives a ratio of . � <5� � � ��� � ��12. � < � �'���(# . The maximum potential is� . �
�=< � < � � / <2/ 1 '�� �(���:# < ����% �C+�' '�, � ��+�%���,�+*�

by Lemmas 5 and 6.

This lemma will help in the final proof giving the performance of Strategy 3 on a , -HST.

Lemma 11 For a , -HST with , 0 �����'��� 3 # <.�7��!'����# <.��� , applying Strategy 3 achieves a competitive
ratio of at most �7��! ��� 3 # .

Corollary 12 There is a randomized algorithm for the MTS problem with competitive ratio


 '���
�� � #&% ��
��(��
���# +
Proof. Combine Lemma 11 with Theorem 1.

Proof of Lemma 11. Consider a , -HST whose diameter is � . Inductively we assume that each . , is at
most �7��!'��� 3 # , and that

� , 1 ' '�,#� ��+ %���+ � %�, . We want to show that the strategy’s ratio is at most �7��! ��� 3 #
and the potential is at most ' '�,�� ��+ %���+ � . Our strategy has two cases, which we analyze separately.

Case 1 Apply Lemma 10. The ratio will be at most .��C< � �'���(# 1 �7��! ��� 3 # . Because , 0�� �(���:#�< ����% � ,
the maximum potential is at most ' ' ,�� ��+�%���+*� .
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Case 2 Due to the requirement of hierarchical reasonableness, in applying both Strategy 1 and Strategy 2
we will take / to be '&� � ��� %�,�+�%�� while setting

�
� at ��,4%�' ,�� ��+ so that our strategies still pay � to move

between subspaces. In this way Strategy 1 will not allow 3 values in different regions to become more than
'&�2� � � %�,�+�%�� apart, nor will Strategy 2 allow 3 values to grow more than '&�2� � � %�,�+�%�� apart, so together
they will not allow 3 values to differ by more than � � ��� %�, . Since each subtree’s strategy will never allow
any two of its nodes to differ by more than � %�, , a node whose 3 value is � more than another’s will receive
no probability.

Let � be so that # � / # ' �#�2�7% � + . (Because . � � �7��!'��� 3 # � � � ���(# , � 1 � 12# .) By Lemma 10, the ratio
. "3 of the combination of the smaller subspaces is at most

. "3 1 �7��!'��� 3 '0#&% � + < � �'���:#
1 �7��!'��� 3 # � ��� � ����� ���(# < �7��! ��� 3 � < � �'���(#

Because the maximum potential is '�� �(���:# <.����% �C+ / and
�
� is at most ��% � if , 0 �7! , we will bound � by

� �#����# <6� � %�� in combining . � with . "3 .

To calculate the ratio of the entire space we will first bound . � � . "3 .

. �(� . "3 � �7��! ��� 3 # � � � ���:# �2' �7��! ��� 3 #
� ����� ��� � ��� # <6�7��! ��� 3 � < � � ���(# +

/ ����� ��� � ���(# �2�7��! ��� 3 � � � �(���:#
0 ��� ��� � ����# (11)

The ratio for the combination of .�� with . "3 is that of Strategy 2,

. 12. �,< . � ��. "3� ��� � 	 � �� � � �'� � (12)

The second term of the ratio ( '0.�� � . "3 +�%�' � ��� � 	 � �� � � � �	��+ ) decreases when . ��� . "3 increases beyond � . So we
can use Equation 11 to bound the ratio of Lemma 9.

. 1 . � < . � � . "3� � � � 	 � �� � � �'�2�
1 . � < ���'����� ����#

�
����� �	�	� ��

���
� ��
��

���
�
� �2�

1 . � < ���'����� ����#� 3 � �
1 �7��!

�
����# < ��� ' � � �� + � 3 < �7��! ����� ���(#� 3

1 �7��! ��� 3 # � ����� ���(#� < �7��!� 3 <
�7��!'��� � ���(#� 3

1 �7��! ��� 3 #
From Lemma 9 the maximum potential for combining the two subspaces is '���. "3 < ��+�/ , and we add at most
'�� �#���:# <6����% �8+�/ through Lemma 6. So the potential is at most

'���. "3 < ��+�/�< '�� �#���:# <6����% �C+ /
1 ' ����� ��� 3 # <6�7��!'���(# < ��� + �.� ��� %�,

�
If the potential is to be at most ' '�,�� � +�%���+ � , we should choose , to be at least ��� � ��� 3 # < �7��!'���:# < ��� ,
as specified in the statement of the Lemma.
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6 Results for specific metric space

The result for arbitrary metric spaces is based on Theorem 1. More specifically, the algorithm would prob-
abilistically construct an " '���
�� 3 # + -HST space according to [Bar96] and then apply Strategy 3 for the HST.
The algorithm for the original metric space uses the same states as the simulated HST algorithm. Strategy 3
has competitive ratio . / 
 '���
�� 3 # + , so the competitive ratio of the algorithm for the original metric space
is


 '0. ,#��
��(# ��
�� � # + / 
 '���
�� � # %'��
��(��
���#=+ .
This bound improves as the , -HST approximation ratio improves for specific metric spaces. In particular the
results of [Bar96] imply that for weighted trees the ratio improves to


 '0. ,(��
�� � # + / 
 '���
�� � #&% ��
��(��
���# + .
Note that if the metric space is induced by distances in an unweighted graph then using Corollary 8 we get
a ratio of


 '���
�� � #&% ��
�� � ��
��(# + .
For / -dimensional meshes we can achieve better bounds by approximating them using balanced , -HST
spaces. An HST is called balanced if at every internal node the size of the subtrees rooted at this node are
equal. Bartal [Bar96] shows that an . -competitive algorithm for balanced , -HST spaces implies a competi-
tive ratio of


 '0. ,#��
�� � # + for meshes. In the rest of this section we will prove an

 '���
���#=+ competitive ratio

for balanced " '���
��(# + -HST spaces and hence we get an

 '���
�� � #&%'��
��(��
��(# + ratio for meshes.

Consider a , -HST with ,50 �7!'��
��:# . We will prove by induction on the size of the tree that there is an
algorithm for the MTS problem with competitive ratio at most � ��
��:# and maximum potential '�, � � + � .
This is clearly true for # / � . Let the degree of the root be � . Then each of its subtree has size #&% � . By
induction the algorithm for each subtree has competitive ratio at most � ��
�� '0#&% �5+ and maximum potential
' '�, ����+�%�,�+ � . We apply Strategy 1 to combine all � algorithms setting � / ��
�� � , / / ' '�, � � +�%�,�+ � and

�
� /

,4%�'�, �	��+ . As in Lemma 7 this choice of / and
�
� ensures that the strategy will be hierarchically reasonable.

Since the maximum potential of a subspace is at most / we can use a distance ratio � / �
��< � 1 ��% � . The

competitive ratio for the entire tree is:

. � <2� � � ��� � ��1�� ��
��='*# % �5+=< �'��
���� / �'��
��(# �
The potential is bounded by� . �

� < � < � � � < ,�� �
, � 1

� �'��
��='0#&% �5+
��
���� < � �� � � 1 '�, � � + � �

7 Side notes

One of the key pieces to our main theorem is the result that Strategy 1 achieves a competitive ratio .�<
 '���
����5+ for the setup of Scenario 0: that is, a uniform space of � points where the on-line algorithm is
charged a factor . more than the off-line for processing tasks. This result has the following interesting
application. Consider the standard MTS problem on an # -point uniform metric space and suppose we apply
Strategy 1 as if . / ��
���# and as if each component of the task vector were multiplied by �7%�. . In other
words, given a task vector '&% � 
 �7�7�*

% � + , the on-line algorithm believes (which happens to be the truth) that it
is paying % , to process the task in state . , but it also believes that the off-line algorithm would pay only % , % .
to process the task in that state.

Given a task sequence ) , consider some off-line solution that (in truth) spends � to process tasks and
�

to
move among states (for a total of � < �

). The on-line algorithm believes, however, that the off-line cost of
that solution is only � %�. < �

. Therefore, we know that the on-line cost will be at most '0.�< �#���(# +�'�� %�.�<� +,<����	��

������� / 
 '�� < � ��
�� # + . In other words, Strategy 1 is simultaneously

 '���
���#=+ -competitive with

respect to the optimal off-line solution (just like the Marking Algorithm), but also constant-competitive with
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respect to the optimal solution that does not move between states (i.e.,
� / 1 ) and even constant-competitive

with respect to the optimal solution that spends at most an

 ' �7% ��
��:# + fraction of its cost for movement

(i.e., � < � ��
���# / 
 ' � + ).
So, this algorithm has the property that its performance (as measured by the competitive ratio) is a function
of how “hard” the sequence is (as measured by how much movement is needed to perform well off-line).

If instead we apply Strategy 1 as if . / � � ���(# , then we get a cost of ��' �,< � � +�< � ' �,< � % � +4��� # . If we used
this to combine on-line schemes on-line, we would pay only ' ��< � � + times as much as the best of them,
plus a cost that depends on �7% � , ��� ' �����	��
 � 
	� + , and the maximum cost of switching between two schemes’
states. (This follows from the fact that the bound holds for the strategy that remains at one scheme after
paying only to move from the initial scheme’s state to that scheme.) This is closely related to the kinds of
bounds known for algorithms for “predicting from expert advice” in the Machine Learning setting [HW95]
and these parallels are discussed further in [BB97].

8 Conclusions

The strategy implied by Corollary 12 is this paper’s main result, a randomized on-line MTS algorithm
whose competitive ratio is


 '���
�� � #&% ��
��#��
��(# + for any metric space. As noted in Section 7, some of the
key ingredients to this result have other interesting implications as well.

The MTS problem is related to the , -server problem introduced by Manasse, McGeoch, and Sleator [MMS90].
In particular, a , -server problem on , < $ points can be expressed as a � � ��



�
-state MTS problem in which

each state represents a configuration of the servers. Thus Corollary 12 implies a competitive ratio of
 '*$ � ��
�� � ,�+ for the , -server problem on a metric space of , < $ points. The best general known result
for the , -server problem, due to Koutsoupias and Papadimitriou [KP95], is a competitive ratio of ��,�� � .

Two interesting open questions that remain are: Can one achieve an

 '���
���#=+ -competitive ratio for the

MTS problem? And, for the , -server problem, can one achieve a polylog ' ,�+ competitive ratio, perhaps by
extending the ideas of this paper?

We would like to acknowledge helpful discussion with Mike Saks.
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Appendix

The following is a folklore theorem. The proof has not appeared in print, however, so we include one here.

Theorem 2 For any metric space, given an . -competitive algorithm for the metrical task system problem
with elementary task vectors, it is possible to construct an algorithm for the general metrical task system
problem with competitive ratio ' �:< � + . , for any � � 1 .

Proof. Let ) be a sequence of arbitrary (not necessarily elementary) task vectors. First, we will show how
to construct a subsequence of elementary task vectors for each single task vector of ) , and will concatenate
the resulting subsequences into a new sequence of elementary task vectors � . Next, we will show how the
behavior of an . -competitive algorithm - for sequences of elementary task vectors, operating on sequence
� , can be used to induce a new algorithm

�
for the original sequence ) . Finally, we will show that

� '0),+�1
' �:< � + - '���+ and ����� '���+�1	����� '0),+ , which gives the result.

An individual task vector 
 of ) can be converted into a subsequence of elementary task vectors of � as
follows. Let 
 / '&%'� 

% 3 
7�7� � 

% � + be an arbitrary task vector, and let % be some small value to be determined
later.

while some % , � 1 do �
/* begin next stripe */
for
���

1 to #
if ( % 5 � 1 ) �

output task (

5 	 �
 ��� �
1 
7� �7� 
 1 
�� . # '&% 5 
)%�+ 
 1 � � � 1 )

17



%*5 � � / � ' 1 

%*5(� %�+
�

�

This construction shows how to create � from ) . Algorithm
�

on ) works as follows. It begins by initializing
a copy of algorithm - , and maintains the invariant that the state of

�
after processing some vector 
 is the

state of - after processing the corresponding subsequence of elementary task vectors. Specifically, when
�

is presented with 
 , it creates a subsequence of elementary task vectors according to the construction above,
and then passes the resulting vectors to algorithm - one at a time. - begins in some state ��� , then passes
through some set of states

�
in the course of processing the elementary task vectors, and ends in some final

state � 3 . Each of these states will have some cost in the original vector 
 / '&% � 

% 3 
7� �7� 
)% � + ; let state � � be
the state of

�
with lowest cost: ��� / /8.�� � . # ����� � % � � . Algorithm

�
begins in state � � , immediately jumps

to state � � to process 
 , and finally jumps to state � 3 to remain in correspondence with - .

Having defined � and algorithm
�

, we must show that
� '0),+ 1 ' � < � + - '���+ and ��� � '���+�1	��� � '0),+ . The

second inequality is simpler. Any solution for ) can be used as a solution for � with the same cost. If the
solution for ) jumps to state

�
to process some task 
 , then jumping to state

�
results in the same total cost

to process the subsequence of � corresponding to 
 .

The first inequality states
� '0);+�1 ' �,< � + - '���+ . Consider some task vector 
 / '&% � 

% 3 
7� �7� 
)% � + of ) . Let 	

be the corresponding subsequence of elementary task vectors in � . The construction breaks 	 into a number
of logical units called “stripes,” each stripe consisting of up to # elementary task vectors, and no two vectors
in a stripe having non-zero values for the same state. We denote the stripes STRIPE1, STRIPE2,. . . .

In the course of processing 	 , say that algorithm - changes state , times, paying total distance / � 
 � ��� .Define # � /�
 % � � %�%�� . During processing of STRIPE
�

for
� 1 #�� , - must either move (which it can do at

most , times), or else pay cost % by the definition of � � . The total cost to algorithm - over 	 , Cost '0- 
�	�+ , is
therefore at least / � 
 � ��� < '*#��&�1,�+ % . Let /������ be the smallest distance in the space, and choose % � � /������ %�� .
Additionally, choose % � � % 5 %�� for all

�
, so #��
% � % � � ' � � � %���+ � Then

Cost '0- 
�	�+ 0 ' � � � %���+�/ � 
 � ��� < � ,4/������ %��(< '0# � � ,�+ %
0 ' � � � %���+ / � 
 � ��� <2# � %0 ' � � � %���+ / � 
 � ��� < ' � � � %���+ % � �

Finally, note that - must travel from � � via � � to � 3 , so we have / � 
 � ���'0 / ����� � � < / � � � � � . So we can write
the final lower bound on the cost of algorithm - as follows:

Cost '*- 
�	 + 0 ' � � � %���+�' / ����� � � < / � � � � � < % � � + �
Recall that

�
begins servicing 
 in � � , jumps to � � to service the vector, and finally jumps to � 3 . So the cost

to
�

for servicing 
 is given by Cost ' � 
 
C+ / / ����� � � < % � � <2/ � � � � � . Thus,

' � < � + Cost '0- 
�	 + 0 Cost ' � 
�
8+ �
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