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Abstract

We present a randomized on-line algorithm for the Met-
rical Task System problem that achieves a competitive ratio
of O(log6 n) for arbitrary metric spaces, against an oblivi-
ous adversary. This is the first algorithm to achieve a sub-
linear competitive ratio for all metric spaces. Our algorithm
uses a recent result of Bartal [Bar96] that an arbitrary metric
space can be probabilistically approximated by a set of met-
ric spaces called “k-hierarchical well-separated trees” (k-
HST’s). Indeed, the main technical result of this paper is an
O(log? n)-competitive algorithm for Q(log* n)-HST spaces.
This, combined with the result of [Bar96], yields the general
bound.

Note that for the k-server problem on metric spaces
of k& + ¢ points our result implies a competitive ratio of
O(c®log® k).

1 Introduction

The Metrical Task System (MTS) problem, introduced by
Borodin, Linial, and Saks [BLS92], can be stated as follows.
Consider a machine that can be in one of n states or config-
urations. This machine is given a sequence of tasks, where
each task has an associated cost vector specifying the cost of
performing the task in each state of the machine. There is
also a distance metric among the machine’s states specifying
the cost of moving from one configuration to another. Given
a new task, an algorithm chooses either to process the task
in the current state (paying the amount specified in the cost
vector) or to move to a new state and process the task there
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(paying both the movement cost and the amount specified in
the cost vector for the new state).

A natural way to measure the performance of an on-line
algorithm for this problem is the competitive ratio. Let
ca(o) represent the cost to an algorithm A for a task se-
quence o, and let OPT represent the optimal off-line algo-
rithm. An on-line algorithm A has a competitive ratio of r if,
for some a, for all task sequences o,

ca(o) <r-copr(o) ta

For randomized algorithms, we replace the cost to A by its
expected cost; this is sometimes called the “oblivious adver-
sary” measure since the tasks can be viewed as generated by
an adversary that produces the task sequence before any of
A’s random choices. Specifically, we say that randomized
algorithm A has competitive ratio r if, for some a, for all &,

Elca(o)] <7 -copr(o)+a

Borodin, Linial, and Saks [BLS92] present a determinis-
tic on-line MTS algorithm with a competitive ratio of 2n — 1
and prove that this is optimal for deterministic algorithms.
They also show that with randomization one can achieve a
competitive ratio of O(logn) for the special case of the uni-
form metric space. Several papers have since presented ran-
domized algorithms for other special metric spaces, such as
an O(log n)-competitive algorithm for “highly unbalanced”

spaces [BKRS92], and an O(2V!°8mlesloen) competitive
algorithm for equally-spaced points on the line [BRS91,
FK90]. Irani and Seiden [IS95] present a randomized algo-
rithm for general spaces that achieves a competitive ratio of
roughly 1.58n.

Two types of lower bounds are known for randomized
MTS algorithms. For certain specific metric spaces such as
the uniform space [BLS92], and the superincreasing space
[KRR91], there are ©2(logn) bounds on the competitive ra-
tio of any randomized on-line algorithm. More generally, a
weaker lower bound of (log log n) [KRR91], subsequently
improved to ©(y/log n/ log log n) [BKRS92], applies to ev-
ery metric space. A long-standing conjecture maintains that
the correct answer is ©(logn): that is, that an on-line algo-
rithm exists with competitive ratio O(logn) for every metric
space, and that there is no metric space for which one can do
better than Q(log n).



1.1 The k-HST approximation

Recently, Bartal [Bar96] made important progress by re-
ducing the problem on general metric spaces to the problem
on one particular type of space. He defines the following
notion.

Definition 1 (k-HST) A k-hierarchical well-separated tree
(k-HST) is a rooted tree with the following properties.

o The lengths of the edges on any path from the root to a
leaf decrease by a factor of at least k.

o For any node, the lengths of the edges to its children are
all equal.

The metric space induced by a k-HST has one point for
each leaf of the tree, with distances given by the tree’s path
lengths.

Bartal shows that an arbitrary metric space M may be prob-
abilistically approximated by a k-HST space. (The reader
may find it easier to think of the k-HST as a randomized hi-
erarchical decomposition of the metric space.) This result is
summarized by the following theorem.

Theorem 1 ([Bar96]) Suppose there is an algorithm whose
competitive ratio is » on the metric space induced by an n-
leaf £-HST. Then there is a randomized algorithmfor general
n-node metric spaces that achieves a competitive ratio of

O(rklognlog, min{n, A})

where A is the diameter of the metric space (assuming the
minimum non-zero distance in the space is 1).

This result invites developing strategies for a k-HST.
Bartal [Bar96] does this using a variant of the the mark-
ing algorithm [FKL*91] and achieves a competitive ratio

of 20(V/legllogn+A)loglogn) for general metric spaces. For
metric spaces of poly(n) diameter (such as shortest-path
metrics on unweighted graphs), the ratio is sublinear in n;
this is the first sublinear bound known for such spaces.

Our paper improves on this bound in two ways. First, we
bring the ratio into the polylogarithmic range, and, second,
we remove dependence on A. We thus achieve a polyloga-
rithmic competitive ratio on all metric spaces.

Our presentation begins in Section 2 with a description
of an on-line problem that will be useful in recursively con-
structing an algorithm for the k-HST. Section 3 presents and
analyzes a strategy for this problem that produces a good so-
lution for balanced Q(log?® n)-HST’s. Section 4 describes a
strategy that can be used for unbalanced Q(log? n)-HST’s
whose branching factor is just two. Finally, Section 5 com-
bines these two strategies into a strategy that achieves an
O(log® n) competitive ratio for any Q(log” n)-HST, giving
an O(log® n/ loglog n) ratio on arbitrary metric spaces.

1Although we do not discuss it here, these results coupled with proba-
bilistic approximationsin [Bar96] yield even better boundsfor some specifi ¢

2 Definitions, preliminaries, and intuition

Because the adversary is oblivious, we can view the MTS
problem as follows. The on-line algorithm maintains a prob-
ability distribution (p1, pa, . . ., pn) Over the n points in the
metric space. Given a task, the algorithm may modify this
distribution, paying a cost pd to move p units of probabil-
ity a distance d. If the algorithm’s resulting distribution is
(P}, ph, - .., p}) and the task vector is (01,92, ..., d,), then
the algorithm pays a cost ) °, p;d; to service the task.

One simplification we will make is to assume that each
task vector is elementary. That is, every task vector has only
one non-zero element. It is not hard to see (and is a folklore
result) that this can be assumed without loss of generality.
We will represent the elementary task with cost J in state 4
by the pair (i, d).

A second simplifying assumption we can make is the fol-
lowing.

Assumption 1 When a task (¢, ) is received that causes the
on-line algorithm to remove all probability from point i, we
may assume that d is the least value causing the algorithm to
do so. Similarly, we can assume the algorithm never receives
atask (,d) when p; is already O.

This assumption is made without loss of generality since re-
ducing the value of d to the minimum that results in p; = 0
does not affect the on-line cost (the on-line player pays only
the movement cost) and does not increase the optimal off-
line cost.

For a point ¢ in the metric space, let w; denote the optimal
off-line cost of ending in state i after servicing all tasks so far.
(This is sometimes called the work function [CL91].) Given
a task (¢, ), the value of w; for j # 4 does not change, and
w; becomes min{w; + J, min;z; w; + d;; }, where d;; is the
distance between i and j. One can see the latter by noticing
that there are two ways the algorithm could end at state : after
the task (¢,d). The off-line algorithm could have already
been at 7, so that the cumulative cost would be w; 4+ §. Or it
could have moved from some state j to avoid the J charge,
at a cumulative cost of w; + d;;.

The algorithms we consider will have the property that
their distribution of probabilities (p1, ..., p,) is a function
of the w values. We call such an algorithm w-based. We will
say such an algorithm is reasonable if it has the property
that p; is zero when there exists a state j such that w; =
w; + d;;. Notice that an unreasonable w-based algorithm
has an unbounded competitive ratio.

Assumption 1 immediately implies the following.

Lemmal For a reasonable w-based on-line algorithm, we
may assume that for each request (¢, J), w; increases by d.

Proof. Say we get a request (¢,d) for which w; increases
by ¢’ < 4. This can only mean that for some j, w; =

metric spaces: for weighted treesthe competitiveratiois O (log® »), for un-
weighted graphsit is also O (log® n), and for d-dimensional grids the ratio
isO(log® n). (Weignoreloglog » termsin theseratios' denominators.)



w; + d;; — &' before the request and w; becomes w; + d;;
after the request. But the request (z, ') would have produced
the same result and, since the algorithm is reasonable, would
also result in p; = 0. This contradicts Assumption 1. u

The algorithms we combine recursively will be even
more than reasonable: they will be hierarchically reason-
able. Suppose the metric space M is partitioned into b sub-
spaces My, ..., My, and algorithm A partitions its proba-
bility mass over sub-algorithms A ..., A, running on each
subspace. We say A is hierarchically reasonable if, when
there exist two states ¢ and j in different subspaces such that
w; = wj; + di;, A assigns probability zero to the entire
subspace containing point i. This property, combined with
Assumption 1, ensures that the algorithm will be reasonable
even if each sub-algorithm behaves independently of the w
values of points in other subspaces.

2.1 Modeling a k-HST’s recursive structure

A k-HST metric space can be understood as a collection
of metric spaces separated by some large distance A, where
each metric space is a smaller k-HST space with diameter at
most A/k. It is natural, then, to attempt to solve the MTS
problem on a k-HST with a recursive algorithm that com-
bines sub-algorithms for the subspaces into an algorithm for
the entire space. Say each sub-algorithm is r-competitive.
In this case, the problem of combining the sub-algorithms is
roughly abstracted by the following scenario.

Scenario 0 We have an MTS problem on a uniform metric
space of b states, but with the following change: when the
on-line algorithm services a task, it must pay » times the cost
specified in the task vector; the off-line algorithm, however,
only incurs the cost specified. In other words, the on-line and
off-line algorithms are charged equally for movement, but
the on-line algorithm is charged » times more for servicing
tasks.

Because this scenario is a generalization of the MTS prob-
lem on a uniform metric space, one natural algorithm to ap-
ply is the well-known Marking Algorithm. This algorithm
will achieve a competitive ratio of O(r log b) for Scenario 0.
One main result in this paper (Section 3) is an algorithm that
improves this ratio to » + O(logb). This is interesting in
itself? and also suggests that applying the algorithm recur-
sively should achieve a ratio of O(logn) on a balanced k-
HST.

20ne implication of this bound is an algorithm with the following inter-
esting property. Consider atask sequence o in the standard MTS problem
on a uniform space and an off-line solution for o that spends « to pro-
cess tasks and 3 to move among states (for a total of o + 3). Then the
on-line algorithm pays at most O (o + Blogn). In other words, not only
isit O(logn)-competitive against the optimal off-line algorithm, it is also
constant-competitive against algorithmsthat do not move between states (or
even against algorithmsthat spend at most an O(1/ log n) fraction of their
cost for movement).

2.2 Some complications

Unfortunately, Scenario 0 is too simplistic even for mod-
eling balanced trees. The main problem is that, because the
sub-algorithms’ ratios are amortized, an »-competitive algo-
rithm for a subspace may pay more than r times the off-line
cost for servicing any given request.

To get a handle on this and related issues, it will be helpful
to make one additional definition. Notice that the optimal
off-line cost is min; w;. Since, however, the w; values differ
from each other by at most the diameter of the space, it is
legitimate for the on-line algorithm to compete against any
one, or even a convex combination w, of these values. We
will say that algorithm A achieves competitive ratio » with
potential function @ against convex combination w (assume
® is non-negative and bounded) if for every task ¢,

calt) + AP < r-Aw

where A® and Aw represent the changes in ® and w for the
task.

Why is this definition useful? Suppose the »-competitive
algorithm for subspace ¢ has potential function ®; and com-
petes against the convex combination w;. Consider the po-
tential function ), p;®; for the global algorithm (p; is the
total probability in subspace ¢). Say the on-line algorithm re-
ceives a task causing w; to increase by d, and as a result the
global algorithm moves probability p a distance d from sub-
space ¢ to subspace j before servicing the task. Then the cost
plus potential change incurred by the global algorithm is just
pd+ p(®; — ®;) + pjrd, where p; = p; — p. In other words,
we can ignore the internal amortizations at the expense of an
additional cost for movement, where this additional cost is at
most p times the maximum value of @;.

The concept of paying more than the off-line player for
movement motivates adding a distance ratio to the scenario.
We add this, and account for differences in subspaces’ sizes,
in the following, more careful version of Scenario 0.

Scenario 1 As before, there are b regions. Each pair of re-
gions is separated by a distance d. Associated with the re-
gions are cost ratios ry > ry > --- > 1, and with the
distance is associated a distance ratio s.

Suppose the on-line algorithm has p; probability on re-
gion ¢ when it receives a request (¢, d). In reaction to the re-
quest, the algorithm moves some probability from ¢, leaving
p} behind. Then the on-line algorithm’s cost for the request
is pirid + (pi — p})sd.

The off-line player, on the other hand, pays only § for
servicing (¢, 4) in region ¢ and only d when it moves between
regions.

This scenario is a generalization of the aptly named “unfair
two state problem” of Seiden [Sei96].

While the primary goal in developing algorithms for this
scenario is to optimize the competitive ratio, our secondary
goal is to limit the maximum value of the potential function



used by the algorithm. This is because, as suggested earlier,
if a potential’s maximum is large, the distance ratio s will
also be large at the next higher level of the recursion used in
solving for the k-HST.

3 Combining equal-ratio regions
3.1 Strategy

We develop two new strategies for Scenario 1. The first
will loosely approximate all the cost ratios by r;. The second
will handle different ratios more carefully but it will only
apply when b = 2. We will then combine these to construct
an algorithm for the k-HST.

Strategy 1 The strategy takes an odd integer ¢ as a parame-
ter. We allocate to region j the probability

1 1 fwi—wi\'
24z i

For two regions with equal cost ratios, Strategy 1 with
t = 1 is equivalent to that of Blum, Karloff, Rabani, and
Saks [BKRS92]. The following lemma tells us that Strat-
egy 1 fulfills the basic properties described in the previous
section.

Lemma2 Strategy 1 is w-based, legal (that is, Zj p; =1
and each p; is nonnegative), and reasonable.

Proof. That the strategy is w-based is obvious. It main-
tains a legal probability distribution because, since ¢ is odd,
> 2i(F 1)t = 0. Because p; is a decreasing func-
tion of only w; among the w values, Assumption 1 implies
that each p; remains non-negative. (Requests to ¢ # j will
only increase p;. Say we receive a request (j,d) that would
make p; negative if w; increased by é. Since the distribution
(Equation 1) is continuous, there is an " < § for which the
algorithm sets p; to be zero. Assumption 1 implies that we
can use (4, d') instead so that p; becomes exactly zero.)

Why is Strategy 1 reasonable? Say that w; = wy + d.
Consider the following term from Equation 1.

> ()

i=1

The kth term of the summation is (—1) = —1. And the
ith term of the summation is at most zero for ¢ # k, since
w; < wy +d = w;. So the summation is at most —1, and p;
is at most zero. L

In the remainder of this section we will analyze the strat-
egy’s performance and find that its amortized competitive ra-
tio is at most r, + 2sb*/*t. We will then bound the poten-
tial used in the analysis. Finally, we will examine how this
strategy performs alone on a k-HST and find that it gives
polylog(n) performance for metric spaces of poly(rn) diam-
eter.

3.2 Performance

To analyze the performance we will require a simple gen-
eral lemma.

Lemma 3 Consider n nonnegative reals z1, . . ., 2, and two
positive integers s < t. If > . af < 1, then 3~ a8 <
nlt=s)/t

This lemma, presented here without proof, is not difficult to
understand. The value of ", #; is maximum when all the
terms are equal.

Lemma4 The competitive ratio of Strategy 1 is at most »; +
2sbt/tt,

Proof. We will use two potential functions ®, and ®,,,. The
potential function &, will amortize the local cost within each
region.

rid b w; —w; \ '
P, = —— - _J
ET(+ 106 ;jzl < d )

Notice that @, has the property that, for any j,

== (w-3)m @

aw]'

The other potential, ®,,, will amortize the movement cost
between regions.

sd b b
O =35 2.0

i=1 j=1

t
w; — wj

d

The potential ® for the strategy is simply ®; + ®,,.

We will show that the algorithm’s local cost is at most 7,
times the off-line cost and that for movement the algorithm
pays at most 2sb/*¢ times the off-line cost. This will yield
the desired bound.

Justified by Lemma 1, we assume that, for a request
(k,d), wy increases from some value y to y + . In this anal-
ysis the strategy will compete against the average w value,
> w;/b. So the off-line cost is § /b.

Let p and p}, represent the probability in region & before
and after the task vector, and let @, (®,,,) and @, (®/,,) repre-
sent the local (movement) potential before and after the task
vector. Then the on-line strategy’s cost will be

Pirrd + (px = pi)sd + @) + @) — Oy — Py

Because p; decreases as a function of wyg, we can upper-
bound this cost using an integral.

y+o %, o®,,
/ (pkrk T LY ) dwi,  (3)
Yy

3wk 3wk 8wk



We will examine the first two terms, representing the local
cost, and the last two terms, representing the movement cost,
separately. For the local cost, we have (using Equation 2)

1 1

o
PETE + ﬁ == (= )= (4)

Thus the total local cost is at most dr; /b, which is r; times
the off-line cost as desired.
Analyzing the movement cost requires more work.

8pk 3(I>m
—sd
6wk8 + 3'wk
st w; — W g W — W; =1
= 7 < d ) Y ( d )
iZk wi<wp
st wi — wy t—1
b d
Wi>Wg
2st W — W =1
- 5
2 () ©

We would like to simplify the summation. Say that w, is
currently the maximum w value. Observe using the proba-
bility allocation (Equation 1) that, since p, is not negative,
the following holds.

t
Wy — Wy
<1 6
S5 < ®
iZa
Because w, is maximum, each term of the summation is pos-
itive. Thus it follows from Lemma 3 that

t—1
Z(wad—wi) S(b_l)1/t<b1/t
iZa
Using the definition of « again we can continue from Equa-
tion 5 to finish approximating the movement cost.

2st Wy — W =1 < 2st W, — W =1
b d - b 4 d

wi<wk iZa
2sb1/t¢
< = ™

The estimates of the local cost (4) and movement cost (7)
bound the total cost (3) by

wkto o, 9 ®
/ (Pkrk + L+ Pk sq + m) dwy,
wi 8wk 8wk 8wk

/w"H 71+ 2sbl/tt d
b

IN

W
Wi

d
= E(T’l + QSbl/tt)

So the competitive ratio is 71 + 2sb1/t¢ as desired.

Notice that if we lett be at least1g b, then /¢ is at most 2,
so the ratio is 71 + 4st. Since we approximate b'/* in exactly
this way, why would we ever want ¢ to increase beyond 1g 5?
A larger exponent ¢ implies that the maximum potential is
smaller.

3.3 Potential

To apply Strategy 1 recursively on a k-HST, we must
bound the potential.

Lemmab5 The potential in Lemma 4 is bounded by

o<e< (- 4s)d
t+1
Proof. The lower bound is trivial. Let us concern ourselves

with the upper bound, bounding ®, and &,,, separately. To
bound ®,, let a be the index of the maximum w value.

rid wi —w; \
"= m??(f)
- mmE T (M)
= Ji:’“"ib;w;,( )
<

rid Z Wq — Wj t+
t+1 . d
rid wy — wi\'
< ——
S ;( a ) ®)

T’ld
t+1

Inequality 8 follows because, since w, < w; + d, each term
of the summation is at most one, so reducing the term’s ex-
ponent increases the term’s value. Inequality 9 comes from
Inequality 6.

Bounding ®,,, is similar. Again, let a be the index of the
maximum w value.

<

©)

—UJ]

3, =

- %E z (%5

N
wj>

i w;<w;
t
< 5T X (=)
1 wi<w;
< sy (Mgt
J
< sd

Adding this to the bound for ®, (9) gives a bound for the
total potential of Strategy 1.
1
d
i+t 5)

This is as promised. u

<I>=<1>z+<1>m§(



3.4 Recursive application

With the strategy’s performance and potential bounded
we can quickly look at how the strategy performs by itself
on k-HST’s. While this analysis is not necessary for the fi-
nal result, seeing a simpler strategy applied to a £-HST will
make the later presentation clearer. It will also suggest why
this strategy alone is not enough to get a bound polylogarith-
mic in n.

First, let us formalize the argument that a recursive al-
gorithm can ignore sub-algorithms’ potentials by increasing
the distance ratio. Say the algorithm receives a task whose
non-zero component is in region i. The sub-algorithm for the
region has amortized ratio r;, so the amortized local cost for
being in that region is ;4. We are interested in its true cost,
however. This is r;0 — (®; — ®;) if &; and &} respectively
represent the sub-algorithm’s potential before and after the
request.

Lemma 6 Consider a version of Scenario 1 where cost ra-
tios are amortized with potentials bounded by ®,,,,,.. Thatis,
requests to region ¢ cost not p;r;d but p; (r;0 — (®;—®;)). Let
A be an r-competitive algorithm for the original Scenario 1
whose distance ratio is § + ®,,4,/d. Then there exists an
r-competitive algorithm A for the scenario with amortized
ratios and distance ratio . The potential of A is at most
D45 plus the potential of A.

Proof. In A we allocate probability as in A. Let @4 be the
potential of A. The potential of A will be

b
5=ty pi®;

j=1

That this is at most ® 4 + ®,,,, IS Clear.

Say A receives a request (7,d). It acts as A would with
this request, leaving p; < p; probability on region i. The
amortized cost to A for processing the request can be split
into two pieces. First we will move probability. Movement
costs us

b b
(pi — p)sd+ > _pi®; —> pi®;
j=1 j=1

b
< (pi—ph)3d = (pi = p1)®i + Y (B — Pj)Pimas
j#i
= (pi—pi)sd — (pi — pi)®i + (pi — ;) Prmax
(pi - p:)(§ + <I)max/d)d
After we move probability, we pay the amortized cost ratio.

(Notice that ®; remains unchanged for j # 1, since nothing
has changed in that region.) This cost is

i (rid—®;+®;)+p;(P;— @)+ D)y — Py = pjrid+P) —Dy
So the total cost to A is

IN

pirid + (pi — Pi) (5 + Prmar/d)d + @)y — P4

Since this is the amortizgd cost to A and the off-line cost is
the same in both cases, A is r-competitive. u

Now we can examine applying Strategy 1 to a k-HST.

Lemma7 Consider an n-point metric space induced by a
k-HST of depth D with & > 9D. The competitive ratio of
applying Strategy 1 with lgn < ¢t < lgn + 2 is at most
9D l1gn.

Corollary 8 There is a randomized algorithm for the MTS
problem with competitive ratio

O(log® nlog® A/ log® log A)

Proof. Choose k to be 181g A/lglg A. Then the depth of
the £-HST is at most log;, A < k/9. This choice satisfies the
conditions of the Lemma 7. Applying Theorem 1 gives the
result. n

Proof of Lemma 7. We will use induction on D to show
that Strategy 1 on a D-depth £-HST (with & > 9D and di-
ameter A) has a competitive ratio of 9D lg n with maximum
potential 9 DA. This is clearly true when D is zero.

For the induction step, we see that the diameter of each
subspace is at most A/k, and the depth of each is at most
D — 1. So the strategy for each subspace has a competitive
ratio of at most 9(D—1) g n and a potential of at most 9(D —
1)A/k.

If we were to simply apply Strategy 1 with d = A, the
strategy would not be hierarchically reasonable. Consider a
node n; in subspace R; whose w value is w,, and a node n;
in subspace R; with w value w, ;. We need the probability
on n; to be zero if w,, = w,, + A. Because the strategy
for RR; uses a convex combination of the w values, however,
the w; that Strategy 1 sees may be as much as w,,; + A/k.
Meanwhile, the internal node may see w; as small as w,,, —
A/k. So the difference of w; and w; may be only A —2A /k.
That they differ by less than A implies that the strategy may
allocate probability to /2;. Unaware of even the existence of
n;, R; may allocate some of this probability to » ;, which we
must avoid.

One solution to this problem is the following. We will set
d to be A — 2A/k while setting the distance ratio § to be
k/(k — 2) to keep sd at the true distance between subspaces,
A. This reduces the off-line player’s distance cost, hurting
the strategy’s ratio slightly. But these parameters guarantee
that the strategy is hierarchically reasonable.

The other issue we must consider is internal potentials.
We can apply Lemma 6 to take care of this. Since & > 9D,
the maximum potential of each subspace (9(D — 1)A/k) is
at most d. So we can use a distance ratio of s + 1 < 9/4
(because k£ > 10).

To calculate the competitive ratio for the £-HST, we use
Lemma 4.

r+2sbtt < 9(D —1)lgn+9lgn=9Dlgn



(We bound b/t by two because ¢ > lgb.) Lemmas 5 and 6
bound the potential.

<tr+11 >A+9( p-n2

k
< (9( —1)lgn _3)
- lgn 4

< 9DA

These two bounds satisfy the induction. u

Notice that this ratio is polylogarithmic in n for poly(n)-
diameter graphs. This is already an improvement on the re-
sult of [Bar96]. In the remainder of this paper, we show how
to achieve a ratio polylogarithmic in n only, without restrict-
ing the class of metric spaces in any way.

4 Combining two regions

4.1 Strategy

We wish to remove the appearance of A in the ratio. The
diameter appeared when we bounded the depth of the tree by
log;, A. This occurs; for example, consider a k-HST decom-
position of a superincreasing metric space. In such a tree,
however, many internal nodes have a subtree much larger
than any of its siblings. This motivates the following idea:
if one subtree is much larger than the remaining & — 1 com-
bined, then we will use Strategy 1 on the b — 1 smaller trees,
and then carefully combine the result with the larger one.
To do this, we need a method for carefully combining two
spaces of unequal ratios.

In this section we consider this problem of carefully com-
bining two regions. For s = 1, the problem is one examined
by Blum, Karloff, Rabani, and Saks [BKRS92]. (They were
concerned with a metric space consisting of two spaces sep-
arated by a large distance. That paper was able to ignore
the internal potential functions and additive constants by as-
suming the two spaces were sufficiently far apart. Because
we cannot afford to assume the spaces are so separated, we
must be more careful and introduce s > 1.) By appropriately
modifying the technique used in that paper, we get a strategy
for Scenario 1 with two regions. (Seiden [Sei96] indepen-
dently developed the same algorithm. We present it here for
completeness.)

Strategy 2 Let p;(y) be the following function.

ri—ry ﬁ(i v
[ —€ = zt

)
pl(y) = 6(7‘1—7‘2)/3 -1 (10)

When b = 2 in Scenario 1, the strategy places p; (w; — w»)
probability in the first region and the rest in the second.

While the strategy is hardly intuitive, the analysis will
make the reason for the selection clear.

4.2 Performance

Lemma9 The competitive ratio of Strategy 2 is

rT— T2

it 6(7‘1—7'2)/5 -1

The potential of the strategy never exceeds (2r; + s)d

Proof. Notice that the strategy is w-based. Because p;(d) =
0 and p1(—d) = 1, it is legal and reasonable.

Our analysis will compete against w;. This means that
the cost must be zero when w- increases, so these costs will
be absorbed by the potential. Our potential, therefore, is

w1 —wa

®=(1 —Pl)Sd+/ (1= pi(y))r2dy

—d
Because w; — wy is always at least —d, this potential is non-
negative. And because the integrand is at most r», the second
term is at most 2r»d, while the first term is at most sd. So
the potential is bounded by ® < (273 + s)d.

A request (2, ) will be absorbed completely by the po-
tential. Let us consider a request (1,4) bringing w; — ws
from z to z + 4. Then, the strategy’s cost is at most

2+ d do
/ (pl(y)m - sddiy1 + d—y) dy
246 d
< / (pl(y)m — Qdeiyl +(1- p1(y))r2) dy
F4

(The integral approximates the cost because p; is a decreas-
ing function.) By setting this to a constant we obtain a first-
order differential equation in p;, which can be solved with
the boundary conditions p; (d) = 0 and p1(—d) = 1. Itis
easy to verify that if p; is as in Equation 10, the integrand is
constant.

/:+6 <p1(y)7’1 - QSdCil_pyl +(1- pl(y))rz) dy

240
r1T —7re
/Z r1 + 76(7‘1_7'2)/5 1 dy

- r1T —7re
= (rl—i— 6(7'1_7'2)/5_1)6

Since the off-line player pays J, the competitive ratio for the
strategy is as advertised. u

5 Combining the strategies on a £-HST

5.1 Strategy

Our strategy combines Strategy 2 with Strategy 1 at in-
ternal nodes of the k-HST where, roughly, the first subtree
contains a disproportionate number of nodes.



Strategy 3 Consider an internal node of a k-HST space

whose b subspaces have ratios ry > ro > --- > r,. The

ith subtree contains n; nodes. Let n represent Zle n;.
Our strategy for the node will be the following.

1. Ifr; < 1281g? n — 321gn, we use Strategy 1 with ¢ an
odd integer between 21gn and 21gn + 2.

2. Ifr; > 1281g”n — 321gn, we combine all but the
largest subspace using Strategy 1 with 2lgn < ¢t <
21gn + 2. Then we use Strategy 2 to combine this with
the largest subspace.

In the analysis we will determine acceptable values to use
for k, s, and d.

5.2 Performance

We will show that the strategy is O(log” n)-competitive
onan Q(log” n)-HST using induction. The following lemma
allows us to combine subspaces with Strategy 1.

Lemma 10 Consider a k-HST with diameter A. Say that
we have a strategy for each subspace with competitive ratio
r; < 1281g” n; and maximum potential ((k —2)/2)A/k. To
combine the subspaces, we apply Strategy 1 with 2Ilgn <
t<2lgn+2,d=((k—2)/2k)A,and s = 2k/(k—2)+1.
Then the total competitive ratio is at most 7, +32 1g n and the
maximum potential is at most (64 1g n+17/4) ((k—2)/2k)A.

Proof. Let § be 2k/(k — 2) so that in paying sd to move
between subspaces the on-line strategy pays A. Because the
potential for each subspace is at most d, we can avoid the
potentials through Lemma 6 if the distance ratio s is § + 1.
This is at most 13/4 if k& > 18. Because t > lgb, b'/¢
is at most 2, so Lemma 4 gives a ratio of r; + 2sbt/tt <
r1 + 32lgn. The maximum potential is

<t$1 +5> d+d < (641gn +17/4)((k — 2)/2k)A

by Lemmas 5 and 6. u

This lemma will help in the final proof giving the perfor-
mance of Strategy 3 on a k-HST.

Lemma 11 Forak-HSTwith k > 2561g” n+1281gn+ 11,
applying Strategy 3 achieves a competitive ratio of at most
1281g? n.

Corollary 12 There is a randomized algorithm for the MTS
problem with competitive ratio

O(log® n/loglog n)
Proof. Combine Lemma 11 with Theorem 1. ]

Proof of Lemma 11. Consider a k-HST whose diameter is
A. Inductively we assume that each r; is at most 128 1g2 n;
and that ®; < ((k — 2)/2)A/k. We want to show that the
strategy’s ratio is at most 128 1g?n and the potential is at
most ((k — 2)/2)A. Our strategy has two cases, which we
analyze separately.

Case 1 Apply Lemma 10. The ratio will be at most
ri 4+ 32lgn < 1281g”n. Because k > 64lgn + 17/4,
the maximum potential is at most ((k — 2)/2) A.

Case 2 Due to the requirement of hierarchical reasonable-
ness, in applying both Strategy 1 and Strategy 2 we will take
d to be (A — 2A/k)/2 while setting s at 2k /(k — 2) so that
our strategies still pay A to move between subspaces. In this
way Strategy 1 will not allow w values in different regions to
become more than (A — 2A/k)/2 apart, nor will Strategy 2
allow w values to grow more than (A — 2A/k)/2 apart, so
together they will not allow w values to differ by more than
A—2A/k. Since each subtree’s strategy will never allow any
two of its nodes to differ by more than A/k, a node whose w
value is A more than another’s will receive no probability.

Let z be so that ny = n(1 — 1/z). (Because r; >
1281g”n — 321gn, 4 < x < n.) By Lemma 10, the ratio 7%
of the combination of the smaller subspaces is at most

1281g*(n/z) + 321gn
1281g* n — 2561gz1gn + 1281g” « + 321gn

ry <
<

Because the maximum potential is (641gn + 17/4)d and s
isat most9/4 if £ > 18, we will bound s by 64 1gn + 13/2
in combining r; with 7.

To calculate the ratio of the entire space we will first
bound ; — 7%,

ri—ry > 128lgn —321gn — (1281g*n
—2561gxlgn + 1281g” = + 321gn)
= 256lgxzlgn —1281g”z — 641gn
> 96lgzlgn (112)

The ratio for the combination of », with 74 is that of Strat-
egy 2,

ry— T4

r<ry+ (12)
e

(ri=rh)/s _ 1
The second term of the ratio ((r; — r4)/(e("*="2)/s — 1))
decreases when r; — 74 increases beyond s. So we can use
Equation 11 to bound the ratio of Lemma 9.

ry—7h
r < T’1+e(r1_r,2)/s_1
96lgzlgn
< "Mt —seges —
e64lgnt13/z |

96lgxlgn

< n 1

1)* | 1281gzl
< 128 <lgn—|—lg(l——)) +128lezlen
xr x
2561gn , 128 128lgzlgn
X

1281g° n p p

IN

1281g* n

IN



From Lemma 9 the maximum potential for combining the
two subspaces is (27}, + s)d, and we add at most (64 lgn +
17/4)d through Lemma 6. So the potential is at most

(2ry + s)d + (641gn + 17/4)d
< (2561g"n 4 1281gn + 11)A_72A/k

2

If the potential is to be at most ((k — 2)/2)A, we should
choose k to be at least 256 1g” n+ 128 Ig n + 11, as specified
in the statement of the Lemma. n

6 Conclusions

The strategy implied by Corollary 12 is this paper’s main
result, a randomized on-line MTS algorithm whose compet-
itive ratio is O(log® n/loglog n) for any metric space.

The MTS problem is related to the k-server problem in-
troduced by Manasse, McGeoch, and Sleator [MMS90]. In
particular, a k-server problem on k + ¢ points can be ex-
pressed as a (*F¢)-state MTS problem in which each state
represents a configuration of the servers. Thus Corollary 12
implies a competitive ratio of O(c® log® k) for the k-server
problem on a metric space of k£ + ¢ points. The best general
known result for the k-server problem, due to Koutsoupias
and Papadimitriou [KP95], is a competitive ratio of 2k — 1.

Two interesting open questions that remain are: Can one
achieve an O(log n)-competitive ratio for the MTS problem?
And, for the k-server problem, can one achieve a polylog(k)
competitive ratio, perhaps by extending the ideas of this pa-
per?

We would like to acknowledge helpful discussion with
Mike Saks.
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