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Abstract

We considerthe problemof learningmonotoneBoolean
functions over {0,1}" under the uniform distribution.
Specifically given a polynomial numberof uniform ran-
dom samplesfor an unknownmonotoneBoolean func-
tion f, and given polynomial computingtime, we would
like to approximate f as well as possible We describe
a simplealgorithm that we prove achieveserror at most
1/2 — Q(1/+/n), improvingon the previous bestboundof
1/2 — Q((log® n)/n). We also prove that no algorithm,
givena polynomialnumberof samplesganguaranteeerror
1/2—w((log n)/+/n), improvingonthepreviousbesthard-
nessboundof O(1/y/n). Theselower boundshold even
if the learning algorithm is allowed membershipmueries.
Thusthis papersettleso an O(log n) factorthe questiorof
thebestachievableerror for learningtheclassof monotone
Booleanfunctionswith respecto the uniformdistribution.

1. Introduction

A monotond3ooleanfunctionf mapsbit vectors{0, 1}"
to {0, 1}, suchthatif f(z) = 1, thenflipping ary bit of =
from 0 to 1 keepsf(z) = 1. (Thisis sometimesalled
a positiveBooleanfunction or, in combinatoricsa mono-
toneincreasingsetsysten) Becausamonotonefunctions
encompassa very broad classof Booleanexpressions—
specificallyall circuitsincluding no negations—algorithms
to learnthemareof specialinterest.

For a particular Booleantarget concept f and a hy-
pothesisfunction h, we definethe error of h asthe frac-
tion of pointsz whereh(z) # f(x); thatis, the erroris
Pr[h(z) # f(=)] for bit vectorsz chosenuniformly from
{0,1}". (All probabilitiesin this paperare over the uni-
form distribution.) Becauseof the generalityof monotone
functions.this paperusuallydiscussegrrorsof nearly1/2.
To simplify discussionwe sometimesusethe closely re-
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latedconcepibof correlation, which for error+ is definedas
1— 2.

The algorithmswe discussare for learningmonotone
functions with respectto the uniform distribution. In
other words, the algorithm hasaccesgo an exampleor-
acle SAMPLE for a hidden monotonefunction f, that
wheninvoked producesa pair (z, f(z)) wherez is cho-
senuniformly at randomfrom {0, 1}". The goal of the
learningalgorithmis to producea goodapproximationto
f (a hypothesiswith low error over the uniform distribu-
tion) using polynomialtime and a polynomialnumberof
samples. Achieving error 1/2 is trivial; achieing error
1/2 — 1/poly(n) is called“weak learning”; andachie/ing
arbitrarily low error ¢ in time polynomialin 1/¢ is called
“stronglearning”. A morepowerful oraclethan SAMPLE
is the membershigueryoracle MEMBER thatallows the
algorithmto query f at arbitrary points of its choosing.
Our upperbounds(algorithms)useonly SAMPLE but our
lower bounds(hardnessesults)hold evenif the algorithm
hasaccesso MEMBER aswell.

Onereasorthe problemof learningmonotongunctions
from randomexamplesis interestingis thatfor severalim-
portantsubclassesf monotondunctions theupperbounds
for the generalclassof monotonefunctionsare the best
known. The most prominentsuchsubclassto which the
algorithm of this paperis animprovement,is the classof
monotoneDNF formulas. (Somerestrictedsubclassesf
monotoneDNF, suchas gDNF, where eachvariable ap-
pearsat mostonce,have known strong-learninglgorithms
[6, 7].) The study of learningmonotonefunctionsunder
theuniformdistributionis alsoinspiredby thefactthatthey
standat the thresholdof whatis weaklylearnable Kearns,
Li, andValiant obsere on proposingthe problem: “Gen-
eralizationin ary direction—unifom distributionsto ar
bitrary distributions, weak learningto stronglearning, or
monotonefunctionsto arbitrary functions—resultsn in-
tractability” [6].

Thefirst resultson learningmonotondunctionsover the
uniform distribution wereby Kearnset al [6]. Their algo-
rithm begins by drawing a sampleof dataand producing
the constant-ondunction (h(z) = 1) or the constant-zero
function (h(xz) = 0) if the numberof positive examples
seerdifferssignificantlyfrom thenumberof negativesseen.



Otherwisetheiralgorithmoutputsthe single-\ariablefunc-
tion (f(z) = z;) thathashighestobsered correlationwith

the data. By resultsof Aldous[1] theremustexist some
variablewith correlationQ2(1/r), and thus their error is

1/2 — Q(1/n). Bshoutyand Tamon[4] improve on this
guaranteasingresultsof Kahn,Kalai, andLinial [5]. They

demonstratean algorithm which outputslinearthreshold
functionsandguaranteesrroratmostl /2—Q((log* n) /n).

Bshouty and Tamon also describesuperpolynomial-time
algorithmswith betterguarantees.

In this paperwe presentan algorithmthat achieves er
ror atmost1/2 — Q(1/+/n). The approachis especially
simple. In brief, we prove that one of three functions
achieves this correlation: the constant-ondunction, the
constant-zerdunction, or the majority function (h(z) = 1
iff >, z; > n/2). By samplingenoughtimesto determine
which of thesethreeis best-correlatedye achieve there-
sult.

We complementhis result with a lower bound show-
ing that this simple algorithmis nearly the bestpossible.
Specifically no algorithm, given only a polynomial num-
ber of accesse$o the target function, canguaranteesrror
1/2—w((logn)/+/n), evenif it canuseboththe SAMPLE
and MEMBER oracles.The bestprevious nggative result,
using“slice” functions,s thatno subexponential-timealgo-
rithm canguaranteerrorO(1/+/n) [6].

In thispaper||z|| representthenumberof 1 bitsin z; in
otherwords, ||z|| = >_, ;. We useX} to representheset
of size% bit vectors: X, = {x | ||z|| = k}.

2. Learning a fair monotone function

A fair Booleanfunctionis a Booleanfunction that la-
bels exactly half the points with 1; thatis, f is fair if
Pr[f(z) = 1] = 1/2. In Section3 (Lemma7), we prove
that a learningalgorithmfor fair monotonefunctionsim-
plies a learningalgorithmfor generalmonotonefunctions
with only a smalllossin error; thus, it sufficesto assume
thatthe targetfunctionis fair. In this sectionwe shav that
anespeciallysimplealgorithm—namelythe algorithmthat
blindly returnsthe majority function over all variables—
learnsfair monotonefunctionswith error at most1/2 —
Q(1/4/n). Thatis, we shav thatthe majority functioncor
relatesweaklywith every fair monotonegunction.

The intuition motivatingthis propositionis thatthe best
fair monotonefunction for foiling the majority function
would bethemostlopsidedfunctionimaginablethesingle-
variablefunction f(z) = ;. (Surprisingly the corverse
is not true: Ben-Orand Linial demonstratehat the ma-
jority function doesnot minimize correlationwith the best
single-wariablefunction[2].) The single-variablefunction

disagreesvith the majority functionona
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fraction of the points. Although we believe that this is
the true worst-caseerror of the majority function, whatwe
proveis aslightly worseapproximatiorguarantee.

Theorem1 Sayf : {0,1}" — {0, 1} is a fair monotone
function. Thenthe majority function

1 if|z]| > n/2
h(z) = { 0 otherwise

haserror at most1 /2 — 0.1/+/n.

We assumedor simplicity in this sectionthat » is odd;
thisassumptions rema/edin Section3 (Lemmas).

To prove the theorem,we analyzethe quantitiespy,
which we defineasthe fraction of the pointsz € X such
that f(z) = 1:

Prf(z) =1 |z € Xi]
[{z € X | f(2) =1}]
(%)
(Recallthatwe definedX, as{z |||z|| = k }, the setof bit
vectorswith exactly £ ones.)

It is easyto seethatthe p; arenon-decreasingvith &:
Imagineplacingl’satrandominto anexamplethatinitially
is all 0's; the probability that the exampleis positive can
only increaseasmore 1’s are added. The Kruskal-Katona

Theorem(page39,[3]) impliesthatin factthesepy, mustbe
increasingatareasonableate.

Pk

Lemma?2 (Corollary to Kruskal-Katona [3]) For a
monotonencreasingfunction f andfor0 < i < j < n,we
havep; < p.

We breakthe proof of Theorem1l into threelemmas.
Theselemmas,proven belowv, examinep; for a particular
s. Defines asthesmallesnumbersothatatleastl /4 of the
pointshave sizeatmosts; thatis, s is theminimumnumber
sothaty~;_ (7) > (1/4)2".

Lemma3 If p, < 1/4,thenTheoem1istrue.
Lemma4 If p; > 1/4,thenwehavep,,_; > p;+0.4/y/n.
Lemma5 If p,_s > ps + 0.4/y/n, thenTheoem1is true.

Proof of Theorem 1. The aborve threelemmasimmedi-
atelyimply thetheorem. u

Proof of Lemma 3. Let o denotethefractionof the points
z with ||z]] < s for which f(z) = 1. Sincethe p; are



increasingandp; < 1/4, weknow thata < 1/4. Also, by
definitionof s, we have thatat mostan«/4 fraction of the
pointsz € {0, 1}" satisfyboth||z|| < s andf(z) = 1.

Becausef is fair, this meanghata 1/2 — «//4 fraction
of thepointsz € {0,1}"” have f(z) = 1 and||z|| > s.
So(1/2 — a/4)/(3/4) = (2 — a)/3 of thepointsz where
[|z|| > s musthave f(z) = 1. Because¢hep;, increasavith
k, the proportionof pointsz with f(z) = 1 is lessin the
ranges < [|z|| < n/2 thanin therangen/2 < ||z|| < n. In
theranges < ||z|| < n/2, then,whereh(z) = 0, f(z) is
also0 for atleastl — (2 — a)/3 = (1+ «)/3 of thepoints.
In therangen/2 < ||z|| < n, whereh(z) = 1, f(z) isalso
1 for atleast(2 — «)/3 of thepoints.

Thetotalfractionof pointswheref (z) agreeswith h(z)
is atleast

1 I (I4a) 1 2—a) (2-a)
R L T T

Thefirst termrepresentshe pointswith ||z|| < s; thesec-
ondthepointswith s < ||z|| < n/2; andthethird thepoints
with [|z|| > n/2. This(2—«)/3 fractionis certainlygreater
thani + % for sufficiently large n sincea < 1/4. L]

Proof of Lemma 4. Definec sothats = n/2 — ¢y/n. A
straightforwarctalculationshavs thate > 5/16. In partic-

ular,
[n/2] n 5 n
> () < [wallG)]
j:[n/2—% n-|
5 0.8
< _ _ n
- 16\/5 (ﬁ) 2
(by Stirling’sapproximation)
= 1/4,
whichimpliese > 5/16 by definitionof s. _
By Lemmaz2, we know thatp,_, > pi/ "™

s/(n—s) =1—2¢c/n/(n/2 + c\/n), wehave

. Since
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The lemmas hypothesigequiresp;, > 1/4, andfor f to
befair we musthave p; < 1/2. Sop; In(1/p;) is atleast
(1/2)1In2. Thisgivesus

3.7c¢ln?2 0.4
> ps+

2/ =7

whichis whatwe want. ]

pn—s Zps +

Proof of Lemmab5. Notethatfori < s, we have

Pn—i 2 Pn—s 2 Ps + 04/\/ﬁ >pi+ 04/\/77,

by ourhypothesisndthefactthatp, increasesvith k. Also
notethat ;" , pi(}) = (1/2) - 2", sincef is fair. The
numberof pointsz whereh(z) = 1 andf(z) = 1is

n

> »()

i=[n/2]
1 n et n
B) ;pn—i(i)‘i‘ Z pn—i<i)

i=s+1

-5 0()

i=[n/2]

1 [ 04\ /n
> - i + — .
> (20 5) ()
[n/2]-1 n n n
SE() 5 ()
i=s+1 i=[n/2]
I, 04 S(n
= 72 +2\/ﬁz_;<z)
1 0.4
> Lty . on
-4 +8\/ﬁ

Sinceh andf arebothfair functions thenumberof pointsz
forwhichh(z) = 0 andf(z) = 1 isthesameasthenumber
of pointsz for which A(z) = 1 and f(z) = 0. Therefore,
the numberof pointsz whereh(z) = 0 andf(z) = 0 is
alsoatleast
Lo, 04
4 8/n '
Thusthetotal numberof pointswhereh(z) = f(z) is at
least
1 2-04 1 01
-2 — 2" =2" -+ —] .
2 * 8v/n (2 * \/ﬁ)
Thereforethe majority function has an error of at most

1/2—0.1//n. n

3. Learning monotone and unate functions

In this sectionwe shav how the previous algorithmfor
learning fair monotonefunctions can be extendedto the
classof generamonotondunctionsandthebroaderclassof
“unate” Booleanfunctions,with essentiallythe sameguar
antees. This implies our main positive result, a learning
algorithmachieing error1/2 — Q(1/+/n).

First we shov how to work aroundour earlierassump-
tion thatr is odd.



Lemma6 If f is a fair monotondarget functionover an
evennumberof variables,thenthe majority functionh has
error atmostl /2 — 0.1/+/n + 1.

Proof. For each(n + 1)-bit vectorz’, definef’(x') asthe
valueof f onz’ with the lasthbit removed. Sincef is fair
andmonotone f’ is fair andmonotone.

Saywe have a randomn-bit vector z with label f(z).
Letz’ bex with arandombit appendedandpredicth(z’).
(This is equialentto the majority function on n variables,

with the label chosenrandomlyif ||z|| = n/2.) Since
(") = f(x), by Theoremd, the probabilitythath(z') #
f(z)isatmostl/2 — 0.1/+/n + L. u

3.1. Learning monotone functions

To transforman algorithm for learningfair monotone
functionsinto an algorithm for learning monotonefunc-
tions, we do the following. We sampleenoughtimes to
determinewhetherthetargetconceptis approximatelyfair.
If it is far enoughaway from fair thenwe canoutputthe
constant-zeror constant-onéunction. If not, thenwe out-
put what the fair-function algorithm doesfor the concept.
Thefollowing lemmamakeshis agumentconcrete.

Lemma?7 Saywe havean algorithm A for learning fair

monotonegunctions,which usesno samplesand outputsa

hypothesisvith error at mostl /2 —e¢. Thenfor anya,d > 0

wecanconstructanalgorithm A’ for learningall monotone
functions,finding a hypothesiswith error at most1/2 —

¢/(2 + «) with probability 1 — 4. Thisalgorithm A’ calls
SAMPLE

22+ a)? 1
a2e? n 5
times.
Remark.  For simplicity we examine a severely hand-

icappedalgorithm A which usesno samplesand has no
chanceof failure, sincethe particularalgorithmwe arecon-
sideringhastheseproperties. The theoremalsoholds for
moregeneraklgorithms at the expenseof addedcomplex-
ity andslightly worsebounds.

Proof. Saythatthe targetconceptf labelsa v fraction of
thepointswith 1. Thenew algorithmA’ useghesamplego
obtainanestimatey of v. By Hoeffding boundswith prob-
ability atleastl — ¢ ourestimatey iswithin y+ae/2(24+«).
Assumethatthis happenslIf ¥ > 1/2 + ¢/2, then A’ out-
putsthe constant-onéunctionh(z) = 1. Sincein this case
y>1/24¢/2—ae/2(24+a) =1/2+¢/(2+4 «), theerror
isatmostl/2 — ¢/(2 + «). Similarly, if ¥ < 1/2 —¢/2,
then A’ outputsthe constant-zerdunction 2(z) = 0 with
erroratmostl/2 — ¢/(2 + «).

Otherwise,if 4 is within 1/2 + ¢/2, then~ is within
1/2+ (14 a)e/(2+a), andA’ outputswhatever A outputs.

This hypothesianay err on the points of the fair function,
plusit mayerronthat (1 + a)e/(2 + «) fractionof points
thatmustberelabeledn orderto makef fair. Thustheerror
of thishypothesiss atmostl/2 — e+ (1 + a)e/(2+ «) =
1/2—¢/(2+ ).

Theonly possibilitythatleadsto anincorrecthypothesis
is if we misestimatey by awide mawgin. Sincethis occurs
with probabilityat mostd, we have the requiredguarantee.
|

As a corollarywe now have our learningalgorithm.

Theorem 8 In polynomial time we can learn monotone
functionsguaranteeingerror at mostl1/2 — 0.04/+/n.

Proof. Let A bethe algorithmthat performsno sampling
or computationand blindly outputsthe majority function.
By Theorem1, this algorithm always has error at most
1/2 — 0.1/4/n on fair monotonetarget concepts.We ap-
ply Lemma7 with « = 1/2 to getour algorithm. u

This algorithm is particularly simple: The amountof
time it requiresin linear in n; it usesonly the labelsre-
turnedby SAMPLE andnottheactualbit vectors;and,the
algorithmhasonly threepossibleoutputs(the constant-one
function,the constant-zerdunction,andthe majority func-
tion).

3.2. Generalizations

Another transformationgeneralizeghe classof func-
tions further to encompassinatefunctions(in somecom-
munities,theseare calledmonotonefunctions). Saythata
variableis a positiveindicator for a Booleanfunction f if
flipping the variablefrom zeroto one never turns f from
oneto zero,andsaythatit is a negativeindicator for f if
flipping the variablefrom oneto zero never turns f from
oneto zero. In monotongunctions,all variablesare posi-
tive indicators;in a unatefunction, every variableis either
apositiveindicatoror a negative indicator

If we have analgorithmfor learningmonotondunctions,
thenwe canconstructanalgorithmfor learningunatefunc-
tions. Thetechniques similar to thatof Lemma?. In this
case,we determinefor eachvariablewhetherit is a posi-
tive or a negative indicator We then usethis information
to transformthe unatetarget conceptinto a conceptthatis
probablya “mostly” monotondunction.

All thatremainss to show thatvariableswhich individ-
ually do not exhibit much correlationdo not causemuch
harmif they arewrongly cateorized. Sincethe algorithm
miscatgorizesvariablesonly if their correlationis very
weak,thefraction of pointsthatmustberelabeledn order
to makethe transformedunction monotoneis very small.
By estimatingthe correlationsaccuratelyenough the frac-
tion becomesso small that with high probability none of



thelabeledexampleghatSAMPLE returndn asubsequent
draw arepointsthatmustberelabeled.Thusthe algorithm
providesan goodestimateto this function. Thoughit may
erronthe smallfractionthatarerelabeledijt is alsoagood
estimateo the original function.

Thefollowing lemmagivesthe precisestatementf the
result;the proofappearsn theappendix.

Lemma9 Saywe havean algorithm A for weaklylearn-
ing monotoneancreasingBooleanfunctions,which usesat

mosts callsto SAMPLE to outputa hypothesisvith error

atmostl /2 — ¢ with probability 1 — § /4. Thenwecancon-
structan algorithm A’ for weaklylearningunatefunctions,
findinga hypothesisvith error at most1 /2 — ¢ /2 with prob-
ability 1 — 4. Thisalgorithm A’ calls SAMPLE at most

2 8n
s—i—gln—
é

d

times,wheg ¢ is definedas

A min{e, d/2s}
= —— L ———

n++/2nln(4/9)
4. Hardness of learning

We now prove that no algorithm, given only a poly-
nomial numberof callsto SAMPLE or MEMBER, can
achieve correlatiormorethananO(log n) factorbetterthan
the algorithmof Theorem8. This proof doesnot rely on
computationahardnesspven if the algorithm hasinfinite
computatiortime, the information available from the ora-
clesdoesnot permita bettercorrelation.

Theorem 10 For suficientlylargen, for anys > n, there
exists a distribution P, over monotoneBooleanfunctions
with the following property: For any algorithm A making
at mosts callsto MEMBER, the expectederror of A (the
probability over P, overanyinternalrandomchoicesof A,

andoverthe choiceof a randomtestexamplez, that A pre-
dictsincorrectly on z) is at least1/2 — O(log(sn)/\/n).

Thus, no algorithm can guaranteeexpectederror 1/2 —

w((log n)/+/n) givena polynomialnumberof queries.

Notice that given accesso MEMBER, the SAMPLE
oracleis redundanbecause (randomized)earningalgo-
rithm cansimply call M EMBER onuniformrandominputs
if it sochoosesthus,we needonly considethe MEMBER
oracle. Also, Theorem10 is written in termsof expected
error, but it caneasilybetransformednto the (¢, ) formu-
lation.

Proof. We beggin by describinghedistribution P;. Givens,
lett = lg(3sn). Thetargetfunctionis a monotone-DNF
formula in which eachpossibleconjunctof ¢ variablesis
placedin thetametindependentlyith probabilityp, where

p is definedsuchthat an exampleof weightn/2 (having
exactly n/2 1'sin it) hasprobability 1/2 of beinglabeled
positive. Thatis, p is the solutionto theequation

(1-p) ) =1/2.

Notethatwe have definedP; sothateachtermappearsn-
dependentlyvith somefixed probability, asopposedo the
morecommondistribution on formulasin which the target
is randomsubjectto having a fixed numberof terms.

To analyzeghelearningalgorithmA, wewantto keepthe
conditionaldistribution P;, giventhe informationgathered
by A sofar, as“clean” aspossible.To do this, we augment
the MEMBER oraclesothatit providesmore information
to the learningalgorithmthanthe standarcboracle. Lower
boundsfor algorithmsusing the augmentedracleclearly
imply atleastthe sameboundfor the standardracle.

Specifically we define the augmentedV i EMBER or-
acle as follows. Given a query example z, with 1's in
bit positionsindexed by someset S, let us imaginethat
MEMBER looksatall of the (1°+) conjunctsof ¢ variables
in S, in lexicographicorderandreturnsthefirst suchcon-
junct that appeardn the tamget function (if = is positive),
or “0” if z is negative. In otherwords, for a positive ex-
ample,the oraclereturnsa witness(thefirst onein lexico-
graphicorder)to the factthatthe exampleis positive. This
augmentedracleis corvenientbecausen the conditional
distribution P; givensomesetof oraclequerieseachterm
is eitherknown to bepresentn thetargetformula,is known
to beabsenfrom thetargetformula,or is still in the target
formulaindependentlyvith probability p.

Onewayto think of this conditionaldistribution P; is as
avectorV; of (’;) elementspnefor eachpossibleconjunct
of sizet, in which eachelementbf thevectorinitially con-
tainsthe numberp, indicatingthe probability thatthe con-
junctisin thetargetfunction. Whena queryz is made the
oracleexaminesoneby onethe entriesrelevantto z (those
correspondingo termsthatif presenin thetargetfunction
would makez positive). For eachentry having valuep, we
canthink of the oracleasflipping a coin, replacingthe en-
try by 0 with probability 1 — p andby 1 with probability
p. The oracleannouncegachresultto the learningalgo-
rithm and haltswheneithera 1 is obsered (meaningthe
exampleis positive) or whenthe numberof relevantentries
is exhaustedfor a negative example).

At ary pointin thelearningprocessby definitionof the
augmented/ EMBER oracle,the vectorV; describesx-
actly the conditionaldistribution P; giventhe information
obsenedby thelearningalgorithmsofar. Specifically en-
triesin V; setto 1 correspondo termsknown to bepresent
in the target function, entriessetto 0 correspondo terms
knownto beabsenfromthetargetfunction,andtheremain-
ing entriesare eachin the tamget function independently
with probability p.



Claim 1 After s queries,at mosts of theentriesin V; are
setto 1.

Proof. Immediate by definition of the augmented
MEMBER oracle. =

Claim 2 After s queries,with probability 1 — e=*/%, there
areat most2s/p zeosin V;. (Call thisevent£.)

Proof. In theworstcasefor eachquerytheoraclecontinues
to flip coinsuntil a1 is producedin otherwords,theoracle
is not prematurelyinterruptedby a previously-seeri, or by
the numberof relevant entriesbeingexhausted).Thus,the
guestionof the numberof zerosproduceds equialentto:
How mary timeswill we flip a coin of biasp beforeseeing
s heads?n 2s/p coin flips we expectto see2s heads.By
Chernof boundstheactualnumberof headss atleasthalf
this quantitywith probabilityatleastl — e=2¢/8, m

For a givenexamplexz, andvector Vs, let V; (z) denote
the probabilitythat« is positive giventhe distribution over
target functionsdefinedby V;. Becausél; describeghe
conditionaldistribution P, giventhe queriesmadeso far,
the Bayes-optimabpredictionfor an examplez is simply,
“If Vi(x) > 1/2 predictpositive,elsepredictnegative” We
boundthe accurag of this predictorthroughthe following
final claim.

Claim 3 For ary vectorV; of size(?) with atmosts entries
setto 1, at most2s/p entriessetto 0, and the remaining
entriessetto p, for a randomexamplez, we havethat with
probability at leastl — 2//n — 2¢~¢, the quantityV; (z)
lieswithin 1/2 & (¢ + 1)t/+/n.

Remark. Notice that by plugginge = +/(Inn)/2
into Claim 3 (and using the definition of t) we have
that with probability 1 — 4/+/n, V;(z) lies within 1/2 +
O(log®*(sn)//n). This immediatelyyields a weaker
versionTheorem10 in which log(sn)/+/n is replacedby
log®?(sn)//n. After proving Claim 3 we give a morere-
finedamgumentproducingthe strongerbound.

Proof of Claim 3. Letussaythatanentryof V; is “relevant
to” anexamplez if « satisfiegheconjunctcorrespondingp
thatentry;thatis, theentryis relevantto « if the conjuncts
presencén thetargetfunctionimplies f(z) = 1.

We begin by shawing thatfor arandomexamplez, with
probabilityatleastl — 2/\/n — 2¢=¢, thefollowing three
eventsoccur

1. Noneof thel-entriesn V, arerelevantto z.

Thereare at mosts 1-entries,and for eachone, the
probability it is relevantto z is 27*. Sinces2~! =
1/(3n) by the definition of ¢, this event occurswith
probabilityatleastl — 1/(3n).

2. At most(2s+/n/p)2~" of the O-entriesin V; arerele-
vantto .

The expectednumberof O-entriesrelevantto z is at
most(2s/p)2~¢. By Markov'sinequality the chance
thatit is morethan./n timesthisis at most1/+/n.

3. The test example z lies in X, for k& within n/2 +
e\/n/2.

By Hoeffding boundsthis eventoccurswith probabil-
ity atleastl — 2e=<".

The probabilitythatall threeeventsoccuris atleast

11 .
- —— — 27 > 1

2
3/ vn
Giventhat the above threeeventsoccur we now shav
that V; (z) lies in the desiredrange. For the lower bound,
V; (z) is minimizedwhenz hasasfew 1's aspossibleand
whenasmary of the 0-entriesin V; arerelevantto = as
possible ThusV; (z) is atleast

— 9

p2t

n/2—6\/n_/2)_M}
i

1-(1-p) {(
1— (1—p)("’2‘2“"_”)] [GSsﬁ/f]
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v

v

1= =) [
(definitionof )
(1 CE)] [arve]

= 1-

(definitionof p)
We boundthe exponentfor sufficiently largen:

(n/Q—i\/m) S n/2—c\/nf2—1t '
(") B n/2

§ (n/2_(c+1) n/?)t

- n/2

_(,_Vae+nY

B Vvn
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> 1=

Thusourlowerboundon V; (z) is
Vi) > 1- {2—(1—ﬂ(c+1)t/ﬁ)} {61/\/5}

1 V21n(2)(c+1) t+1
== 1-— 5 € Vn

1 2¢/21n(2)(c+ 1)t + 1
1-5 [1+ v




1 V22 (c+ 1)t +1/2
T2 vn

1 (e+ 1)t
2 3T m

We maximizeV; () whenz containsaasmary 1’'saspos-
sibleandasfew 0-entriesaspossible ThusV; (z) is atmost

-7

(ALY 1)

Vi(z) <
= 1-2"
We boundthe exponentfor sufiiciently largen:
(1) (nf2 4 en2
cr o et

- <1+7C\/m+t)t

n/2—t
t
< (14 V2(c+ 1)
vn
< 1s 24/2(c + 1)t .
i \/ﬁ
Thusour upperboundon V; (z) is
2v2(ct1)t
V@) < 12 (FFA)
1 _2v2i@)(et1)t
= 1— —¢ NG
2
. L 2v/21n(2)(c + 1)t
2 vn
1 (e+ 1)t
< = .
- 2 + v/n

Giventheaborve threeclaims,we now completeheproof
of Theorem10. Claim 2's event £ fails with probability
e~*/*. Given&, we would like to know the probabilitythat
the Bayes-optimapredictionis correcton a randomexam-
ple. Define P, for 1 < ¢ < /n asthe probability for a
randomexamplez that|V;(z) — 1/2| < (¢ + 1)t/\/n. By
Claim3, weknow that1 — 2//n — 2¢=¢" < P, < 1. The
probabilitythat the Bayes-optimapredictionis correctfor
arandomexample,then,is atmost

(3
+ (P— Py) (%4—%)

+ (Ps—Py) <%+%)

+
+ (P\/E_P\/E—l) <%+(\/ET—;W> .

By telescopinghis serieswe geta boundof

V-1
1 (Vn+1)t t
gﬂﬁ ﬁ>_;gn
1 t

IN
|
+
|
B
+
N

s%+%«ﬁ+ﬂ4ﬁ—)
_g%;m+§?%)
- o)

Thus the besta predictorcando is to achiee a 1/2 +
O(t/+/n) probability of agreeingwith the target function,
giventhat& occurs.Sincef fails with o(t/+/n) probability,
andt = O(log sn), we have thetheorem. L

5. Conclusions

This paperclosesto within an O(log n) factortheques-
tion of how well algorithmscan learnthe classof mono-
tone Booleanfunctionson the uniform distribution, given
a polynomial numberof accesseso the target function.
It is naturalto supposehat one might guaranteean error
1/2—Q((log n)/+/n) usingamoresophisticatedlgorithm
thanthat of Theorem8. In particular the following ap-
proachappearpromising:First,orderthevariabledy their
obsened individual correlationswith a sufficiently large
sampleof data. Then,look atthen hypotheseg;, ..., h,
whereh; is the majority function over just the first ¢ vari-
ablesin this ordering. Finally, choosethe h; of highest
obsened correlationwith the data(or the constant-zerar
constant-on@ypothese# thetargetfunctionis sufficiently
non-fair).

Themostinterestingopenquestiorrelatedo thiswork is
thatof the learnabilityof monotoneDNF formulasover the
uniform distribution, wherethe algorithm’s time and sam-
plesusedmay be polynomialin the numberof termsin the
formula. The proof of Theorem10 usesa tamget concept
including©(sn) terms,andsoit doesnot applydirectly to



this problem. A numberof algorithmshave beengivenfor
specialcasef this problem(i.e., whenthe targetfunction
is further restrictedto be a specialkind of monotoneDNF
formula) but we know of no positive resultsbetterthanthe
guarante®f Theorem8 for thegenerakase.
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Appendix

Proof of Lemma 9. For eachvariablei, our new algo-
rithm A’ computesanestimate®; of therelevancer; of that
variable
ry =

Prf(z) =1|a; =1]=Pr[f(z) =1 |2; =0]
= 1-=2Pr[f(z) # x;] .

For each, after(2/é?) In(8n/§) exampleswith probability
d/4n theestimateof Pr [f(z) # z;] iswithin é/2 of thetrue
value. Thuswith probability 1 — /4 we estimateall of the
7 within r; £ €.

When f is aunatefunction,theith variableis a positive
indicatorexactly whenr; > 0. We definet : {0,1}" —
{0, 1}” to transformbit vectorssothat f o ¢ is amonotone
functionif we have thecorrectvaluesfor all ther;:

t(z): = { i

1—.1‘2'

if 7, >0
otherwise -

To computeits returnvalue, A’ definesfor A a new or-
acleSAMPLE', whichworksby receving (z, f(z)) from
SAMPLE andreturning(t(z), f(z)). Since(fot)(t(z)) =
f(z), SAMPLE' is anoracleto f o ¢, andthe distribution
of its returnedvectorsis still uniform. So A’ canusethis
oracleto call A(SAMPLE',§/4), which returnssomehy-
pothesifunctionh. Thereturnvalueof A’ ish o t.

Sincet is basedon the 7;, however, f o t may not be
monotoneln particular thetransformatiort maytransform

variablesincorrectlyif r; is within 0 & ¢. But in this case
we canrelabela small fraction of the pointsto make f o ¢
monotone.Let z & e; denotethe bitwise exclusive-OR of
z with e;, thebit vectorthatis 0 exceptin theith position.
If ¢ mistransformghe ith variable,we relabelthe |r;| < é
fraction of pointsz wherez; = 1, (f o ¢)(z) = 0, and
(fot)(;l‘@ ei) =1.

With probability 1 — ¢/4, the numberof variablesi
for which we mustdo this relabelingis at mostn/2 +

(n/2)1n(4/0), becaus¢hechancehat?; andr; have dif-
ferentsignsis at most1/2. Assumingthis occurs,we may
needto relabelasmuchasan (n/2 + \/(n/2)In(4/6))é
fractionof thepointsto makef o t monotoneBut A’ need
not computetheseto generateSA MPLE': The probability
thatnoneof the s examplesseerby A fall in theserelabeled

pointsis atleast
4
1- <g+ glng) és

n n. 4\ ’
> 1-4/4.

We assumethen,that A seesa monotonefunctionthrough
SAMPLE'.

If A succeedsits hypothesish haserrorat most1/2 —
¢. This hypothesismay also be wrong on the (n/2 +

(n/2)1n(4/0))é relabeledpoints,soits erroron f o t is
atmostl/2 — e+ (n/24+ /(n/2) In(4/d))é < 1/2 —¢/2.
Thisis theerrorof h o t (thehypothesiseturnedby A’) on
fotot=f.

Foureventsmayoccurto prevent A’ fromreturningahy-
pothesiof erroratmostl /2 — ¢/2. Oneof theestimateof
7; maybeoutsider; &+ ¢. Thenumberof variabledor which
we mustdo relabelingmayexceedn /2 + v/ (n/2) In(4/9).
Oneof the samplesd seesmay bein the relabeledpoints.
Or the h returnedby A may have errormorethanl/2 — e.
Eachof theseoccurswith probability at mosté/4, so A’
succeedsvith probabilityatleastl — 4. u
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