Science of Computing Suite (SOCS):
Resources for a Breadth-First Introduction

Carl Burch
Saint John’s University
Collegeville, Minn., USA

cburch@csbsju.edu

ABSTRACT

Over the last ten years, our department’s breadth-first in-
troductory course has evolved independently of other survey
courses in computer science. Due to its success, we du-
plicated the ideas into our course for non-majors, and this
has also proven successful. None of the published resources
match our vision for these courses, and so the department
has developed its own. In this paper, we describe the design
of the majors course, and we introduce a variety of resources
developed for both courses. These resources, which could
be useful in many other courses also, are freely available
through the Web.

Categories and Subject Descriptors

K.3 [Computers & Education]: Computers & Informa-
tion Science Education—Computer Science FEducation

General Terms

Design, Documentation, Theory

Keywords

CS1, breadth-first, simulation

1. INTRODUCTION

In Fall 1993, our department introduced to its computer
science major an introductory, breadth-first course, Intro-
duction to the Science of Computing (CSCI 150). Despite
persistently searching published textbooks over the years,
we have found none that closely match our vision for the
course. As a result, the department has developed its own
resources. Today, this course represents the cumulative work
of the nine faculty who have taught the 42 sections of the
course offered since then. The authors of the current pa-
per represent the two faculty who have taught the course
most recently and who have developed most of the current
resources.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

S GCSE' 04, March 3-7, 2004, Norfolk, Virginia, USA.

Copyright 2004 ACM 1-58113-798-2/04/0003 ...$5.00.

Lynn Ziegler
Saint John’s University
Collegeville, Minn., USA

Iziegler@csbsju.edu

In Fall 1997, the department duplicated the ideas behind
CSCI 150 into our course for non-majors, resulting in Com-
puting: Science and Applications (CSCI 130). This course
has proven very popular with students, and 28 sections have
been taught since its inception.

In this paper, we describe the design of CSCI 150, and we
introduce a variety of resources developed for both CSCI 130
and CSCI 150. These resources, which include written re-
sources and a suite of support software designed for labora-
tories, are freely available through the Web.

2. CSCI 150 DESIGN

The CSCI 150 design derives from the particular circum-
stances of our colleges, as it must.! Since the colleges it
serves are liberal arts colleges, the department feels that a
breadth-first introduction is important. This is an implicit
recognition that students in their first year are exploring
possible majors; many complete CSCI 150 as a part of this
exploration and choose to concentrate on another discipline.
For these students, the primary role of CSCI 150 is as a piece
of their overall liberal education. Such students should take
from the course an understanding of the important ideas in
computer science.

Indeed, the colleges have recognized this role by count-
ing CSCI 150 (and, incidentally, CSCI 130) toward their
common core curriculum. The courses fulfill the students’
“quantitative reasoning” requirement and also act as “nat-
ural science” courses. Though these designations are some-
what arbitrary, the ways of thinking they indicate affect the
choice of course content, too.

As for many institutions, the 1989 Denning report “Com-
puting as a Discipline” inspires our introductory survey [§].
Our experience with CSCI 150 matches an important obser-
vation in the report.

The introductory sequence should bring out
the underlying unity of the field and should flow
from topic to topic in a pedagogically natural
way. It would therefore be inadequate to orga-
nize the course as a sequence of nine sections, one
for each of the subareas; such a mapping would
appear to be a hodge-podge, with difficult tran-
sitions between sections.

One of the biggest issues for a breadth-first approach is ex-
actly this point of coherence. Without some uniting theme,

!The department is joint between the College of Saint Bene-
dict and Saint John’s University, two independent colleges.
Thus, we refer to these host institutions in the plural.

CSCI 150 | CC2001
Knowledge unit coverage | recomm.
DS2 Basic logic 1.4 10
PF1 Fund. programming 7.0 9
PF3 Fund. data structures 2.8 11
ALl Algorithmic analysis 1.4 4
AL3 Fundamental algorithms 14 12
AL5 Basic computability 4.2 6
AL7 Automata theory 4.2 —
AR1 Digital logic 5.6 6
AR2 Representations of data 5.6 3
AR3 Assembly level 4.2 9
OS1 Operating sys. overview 14 2
0S3 Concurrency 1.4 6
OS5 Memory management 1.4 5
IS1 Issues in intelligent sys. 14 1
1S2 Search 1.4 3

Figure 1: Estimate of CC 2001 knowledge unit cov-
erage.

the course can easily appear to students as a study of in-
dependent subjects. This frustrates students, who find that
as soon as they have mastered one subject, the course has
moved to a very different topic. A unifying theme allows
students to build connections between subjects, thus rein-
forcing their overall understanding.

A survey of past SIGCSE papers indicates that most writ-
ers do not describe breadth-first courses in terms of such a
uniting strand. Of those that do, the themes identified in-
clude the following.

Programming: Students develop small programs related
to different concepts in the course during laboratories
[15, 14]. For example, when the students study logic,
they write programs to compute logical functions (or
perhaps even to operate on logic circuits).

Application-oriented: The course explores a variety of
concepts surrounding a particular computer applica-
tion. The two applications mentioned in the literature
are the Internet and the Web [10, 12].

Bottom-up: The course moves in progression up the com-
puter systems hierarchy [9, 7, 11]. In other words,
the course begins with logic circuits, then digital com-
ponents, then assembly language programming, then
programming in a high-level language.

Algorithms: The course emphasizes algorithms and their
efficiency [2]. For example, the course could motivate
a unit on logic by the need to express preconditions
and postconditions.

While these approaches can work well, our course has de-
veloped a very different emphasis: that of computational
models and their relationship. The course, as currently
conceived, includes eight primary units, beginning with a
bottom-up approach through the first half. The following
describes the topics within the units, along with their rela-
tionship to the theme of computational models. (Figure 1
correlates the coverage of topics with the knowledge units
of Curriculum 2001 [6].)

Data representation: bits, integer and floating-point rep-
resentation, multimedia. This unit is necessary to the
computational models theme because of data’s central-
ity to the concept of computation.

Circuits: logic gates, Boolean algebra, adders, flip-flops.
The logic circuit is one of the course’s major compu-
tational models.

Machine language: CPU architecture basics, instruction
representation, assembly language. Machine language
is another major computational model.

High-level programming: imperative constructs, using ob-
jects, procedures (all in Java). High-level language is
another major computational model.

Operating systems: purpose, multiprocessing, paging. The
coverage of multiprocessing is a practical outline of
how additional CPUs do not add new forms of com-
putational power.

Artificial intelligence: game search, philosophical issues,
neural networks. This is an exploration of one fron-
tier of computational power, incorporating some sig-
nificant thought about the computational power of the
human brain. (Additionally, we can demonstrate that
an artificial neural network is computationally as pow-
erful as any similarly connected combination of logic
gates.)

Structural linguistics: context-free grammars, regular ex-
pressions. These theoretical models tie into the later
study of automata, and their relationship in expressive
power introduces the concept of computational hierar-
chy.

Computation theory: finite automata, Turing machines,
reductions, halting problem. This final portion relates
all of the Turing-complete models, and demonstrates
that some problems (i.e., the halting problem) are be-
yond these models.

For the first half of the course, this outline follows the bottom-
up model closely. Thereafter, however, we reinterpret the
bottom-up model in terms of developing reductions from one
layer to another. This interpretation connects the bottom-
up coverage with theoretical computational models, and the
overall effect is to draw a broad spectrum of computer sci-
ence into the theme of computational reductions. By the
end, we can draw the picture of Figure 2 uniting most of
the course’s major topics.

Though this theme allows a broad array of computer sci-
ence topics, it is important to note that it is not complete.
Most significantly, though it would be desirable, the study of
computing-related social issues does not fit neatly into this
theme. CSCI 150 once included a project in which student
groups presented a talk on a topic of their choice relating
computing and society. This assignment has finally been
eliminated, however, because it has not meshed with the
course’s theme or approach.

In content, the course matches closely that outlined by
Bagert et al., though that paper does not identify such a
theme [1]. Two warnings of Bagert et al. match with our
own experience: The breadth-first model is difficult to apply

Turing

machines theorem
automaton iﬂrgl":;
simulator

compiler

machine
—
Java language
logic circuit
simulator ' CPU architecture
logic
circuits

Figure 2: A graph of reductions between computa-
tional models.

to students with previous computer programming course-
work from high school or other colleges. (Such students are
too rare in our case to create an accelerated track [4].) Sec-
ond, such a course can go too far toward destroying the
myth that computer science is about training programmers.
(At one point, some of our graduating classes demonstrated
low programming competence. While pinpointing the cause
is impossible, one possibility is that the low emphasis then
given to programming in CSCI 150 led students to consider
subsequent coverage as beside the point. A conscious ef-
fort to strengthen this unit in CSCI 150 coincided with the
emergence of classes with more programming competence.)

Curriculum 2001 adds its own criticism: Breadth-first in-
troductions, it says, can add a full course to the size of the
major ([6], p. 31). Our experience does not match with
this observation. Students easily transfer the programming
unit into their next course, which addresses object-oriented
programming and Java more thoroughly. Additionally, they
appear to transfer most of the hardware-oriented material
into the sophomore-level course on computer systems. Since
the coverage of theoretical models appears already to exceed
the recommendation of CC2001, further coverage may not
be necessary; nonetheless, our curriculum requires an upper-
division course including the subject (and we would admit
that by that point, students have forgotten much of the au-
tomata theory they studied in CSCI 150). We have found,
then, that at least 2/3 of the course material transfers neatly
into later points in the curriculum. Even if some material re-
quires repetition later, this is consistent with the curriculum
design principle of spiraling [13].

3. RESOURCES

Over the years, department faculty have developed a wide
range of materials for CSCI 130 and 150. Many of the cur-
rent materials are now available freely through the Web for
faculty at other institutions to adapt to their own purposes.

http://www.cburch.com/socs/
This section introduces these materials to the wider com-
puter science community.
3.1 Written resources

Though we have examined many published textbooks,
none match our selection of material accurately. Thus, we
have developed new written resources for students. The
CSCI 150 resources include three parts.

e The 100-page textbook is an expanded set of notes
developed for the course.

e The 60-page programming supplement describes the
fundamentals of Java programming. As a separate
component, faculty can easily substitute another in-
troductory programming text (such as Karel [3]), per-
haps in another language. The supplement could also
be useful in other courses introducing programming.

e The study guide includes a selection of past test ques-
tions, with solutions.

The copyright for these materials allows others to distribute
them (or a subset of them), provided that the title page is
included.

3.2 Laboratories and software

Initially, CSCI 150 adopted the schedule suggested by the

Denning report: three one-hour lectures and one three-hour
laboratory session each week.? (In practice, the line between
laboratories and lectures is somewhat obscured by frequent
in-class exercises during the lecture time, scheduled for a
classroom equipped with student computers.) However, be-
cause most of the laboratories include a variety of exercises,
rather than long projects, we have found little reason for
such long laboratory sessions. In Fall 2003, the department
changed the course to a schedule of two 85-minute labo-
ratory sessions for every three classes, a schedule that had
proven successful with CSCI 130. This modification has less-
ened student fatigue and reduces the delay between the in-
troduction of concepts in the classroom and the exploration
of those concepts in the laboratory.

One enticing advantage of the computational-models theme

is that it opens the prospect of labs in which students be-
come more familiar with the models by creating designs
within their respective frameworks to accomplish assigned
tasks. Thus, in one laboratory for circuits, students design
a simple circuit for controlling a four-state vending machine
for soft drinks. Or when the class studies regular expres-
sions, the laboratory session has students write regular ex-
pressions to search a dictionary for, say, words with five con-
secutive vowels (e.g., queueing). Students appreciate this
type of laboratory work: In a midterm evaluation form ad-
ministered in Fall 2003, 29 of 51 students characterized the
laboratory assignments as “very useful in learning the ma-
terial,” and another 21 characterized them as “somewhat
useful.”

This laboratory strategy, though, requires software so that

students can work with the models in simulation. To this
end, the department has developed a collection of Java ap-
plications. All are available to the public via the Web page.

Numeric representation (Figure 3(a)) demonstrates how

numbers are represented in two’s-complement and floating-
point formats. CSCI 150 students spend a laboratory
session becoming more familiar with each of these rep-
resentations.

PNM editor permits students to edit PNM files and to

view the images they represent. (The PNM format
is a popular image format for uncompressed ASCII
images.) CSCI 150 students use this tool as part of
one laboratory concerning image representation.

2The colleges actually rotate through a six-day cycle. Stu-
dents attend lectures three days per cycle and a laboratory
session once per cycle.

DEDNERREE

= sy 4ol
ﬂ File Memory Assembler Options Help
e[] P —]
. [GEEEEEI oAb 11110 |
® Ac: [ooooo bl d
Displayed Type: ‘ Real | 4.5 M= [(S Zero Fiag: faise =l
|sen sz Lack |

Positive Flag: rue

{oSofolofo¥o oF¥olofofolofo
Negate ‘ Increment || Decrement ‘ Double ‘ Halve

Displayed Type: ‘ Hexadecimal 0042]

Instruction Decimal | | Decimat
00000 ffo0olo0f}Lo40 1001 | 010100000000 1 1010000000000 9

|||II|.

00001 Ofo0OERY 7€ 111 01011 P00 42 10101000000 o]
s |

‘00010 FEEIGOR0]su 1010

-

[olofofofofofofdl Eolofolof¥ol ol 00011 OOIEREN]L020 11110 dit_options o
[Negate || increment || Decrement || Double || Halve L :::::ADDIOAL, 01110 m\% %::“'5. ,7?
o0110[aflo000g]jumP 0 2 E 9
I = | —
Displayed Type: | Decimal || 42| — P T e — o
[olofofofolofofd eloEfoEToE¥ R —
‘ Negate || Increment H Decrement || Double || Halve
Quit || 16bitwords || Add || Subtract || Multiply || Divide
(a) Data representation (b) Logic circuit simulator (¢) CPU simulator

File Help

[

(d) Java robot library (e) Grammar editor (f) Automaton simulator

Figure 3: Screen shots of some software resources.

Logic circuit simulator (Figure 3(b)) provides a drawing- Java library (Figure 3(d)) includes the robot API (sim-
program environment in which students can design ilar to a Logo turtle) used in the Java supplement.
and experiment with logic circuits [5]. (In early it- CSCI 150 includes five Java laboratories, of which three
erations of the course, students used breadboards, but use this API.
this severely limited the complexity of the circuits they
could build. We moved to simulators to enable stu- Grammar editor (Figure 3(e)) takes a context-free gram-
dents to explore deeper concepts.) mar written in the built-in editor and computes parse

trees for text given by the user. This tool plays a role
in a CSCI 150 laboratory session concerning context-
free grammars and regular expressions.

In two laboratory sessions, CSCI 150 students use this
program to learn about combinational and sequen-
tial circuit design. Much later, when they take the

sophomore-level computer systems course, they. revisit Automaton simulator (Figure 3(f)) allows students to de-
the program and take advantage of its hierarchical de- sign and experiment with DFAs, NFAs, DPDAs, and
sign features. Turing machines in a drawing-program environment.

CSCI 150 students use this tool in two laboratories,

CPU simulator (Figure 3(c)) allows students to experi- one for finite automata and one for Turing machines.

ment with the 8-instruction CPU used in class. The
GUI program allows students to view and edit the bits
in registers and memory as the computer completes
each instruction. The program includes an integrated
assembly language editor and a button for stepping
backwards through the CPU’s execution.

Sort animator animates a variety of sorting algorithms.
When there is time in the course, students use this
program for a simple laboratory assignment concern-
ing sorting algorithms and big-O time complexity.

Lambda calculator demonstrates reductions in the lambda
calculus. Although CSCI 150 does not include the
topic, the department sometimes teaches the subject
in more advanced courses, and this program allows
students to experiment with the lambda calculus.

Three CSCI 150 laboratories involve using this sim-
ulator. In the first, they write programs by flipping
bits (similar to programming the Altair 8300); in sub-
sequent labs, they use the assembler.

The 8-instruction CPU design is simple enough that it
can be implemented in the circuit simulator (as illus-
trated in Figure 3(b)). Although understanding this 4. CONCLUSION

design does not play a major role in CSCI 150, the in- In our liberal arts context, the introductory survey to
structor can demonstrate the logic circuit as it executes computer science, united using the theme of computational
a program. Students in the sophomore-level computer models and their relationship, has proven a viable way of
systems course study this design in more detail as part structuring the first course in computer science. This theme

of the unit on architecture. allows for a broad coverage of the core concepts of computer

science, and it automatically leads to many laboratory as-
signments for which students experiment with building de-
vices to accomplish tasks within the models they have stud-
ied.

We invite other faculty, even where they cannot consider
the structure of this particular course, to use the resources
introduced in this paper.

5. ACKNOWLEDGMENTS

All of the faculty who have taught CSCI 150 in the past
have contributed significantly to its current shape. Besides
the authors, these professors include Nathley Caesar, Daniel
Challou, Noreen Herzfeld, J Andrew Holey, Chris Lusena,
John Miller, and Jim Schnepf.

6. REFERENCES

[1] D. Bagert, W. M. Marcy, and B. A. Calloni. A
successful five-year experiment with a breadth-first
introductory course. In Proc. 26th SIGCSE Tech.
Symp., pages 116—120, March 1995.

[2] D. Baldwin, G. Scragg, and H. Koomen. A three-fold
introduction to computer science. In Proc. 25th
SIGCSE Tech. Symp., pages 290-294, March 1994.

[3] J. Bergin, M. Stehlik, J. Roberts, and R. Pattis. Karel
J. Robot: A Gentle Introduction to the Art of
Object-Oriented Programming in Java. 2003. Online
[Sep 1, 2003]. Available WWW:
http://csis.pace.edu/ bergin/.

[4] K. B. Bruce. Attracting (& keeping) the best and the
brightest: An entry-level course for experienced
introductory students. In Proc. 25th SIGCSE Tech.
Symp., pages 243-247, March 1994.

[5] C. Burch. Logisim: A graphical system for logic
circuit design and simulation. Journal of Educational
Resources in Computing, pages 5—16, March 2002.

[6] Computing Curricula 2001: Computer Science.
December 2001. Online [Sep 1, 2003]. Available
WWW:
http://www.acm.org/education/curricula.html.

[7] N. Dale and J. Lewis. Computer Science Illuminated.
Jones and Bartlett, Sudbury, MA, 2002.

[8] P. J. Denning, D. E. Comer, D. Gries, M. C. Mulder,
A. Tucker, A. J. Turner, and P. R. Young. Computing
as a discipline. Communications of the ACM, pages
9-23, January 1989.

[9] J. Gersting, P. Henderson, P. Machanick, and Y. Patt.
Programming early considered harmful. In Proc. 32nd
SIGCSE Tech. Symp., pages 402-403, February 2001.

[10] C. Gurwitz. The internet as a motivating theme in a
math/computer core course for nonmajors. In Proc.
29th SIGCSE Tech. Symp., pages 68-72, February
1998.

[11] Y. N. Patt and S. J. Patel. Introduction to Computing
Systems. McGraw-Hill, New York, 2004.

[12] A. Phillips, D. Stevenson, and M. Wick. Implementing
cc2001: A breadth-first introductory course for a
just-in-time curriculum design. In Proc. 34th SIGCSE
Tech. Symp., pages 238-242, February 2003.

[13] K. Powers. Breadth-also: A rationale and
implementation. In Proc. 34th SIGCSE Tech. Symp.,
pages 243-247, February 2003.

[14] C. Shannon. Another breadth-first approach to cs 1
using python. In Proc. 8/th SIGCSE Tech. Symp.,
pages 248-251, February 2003.

[15] S. Vandenberg and M. Wollowski. Introducing
computer science using a breadth-first approach and
functional programming. In Proc. 31st SIGCSE Tech.
Symp., pages 180-184, March 2000.

