Introducing computer science in a summer program Carl Burch, NECC 2002

Web pages

Course home http://www.cs.cmu.edu/~cburch/pgss01/ Textbook home http://www.cs.cmu.edu/~cburch/survey/

Schedule of topics

- Week 1 1. Introduction, algorithms, pseudocode & flowcharts
 - 2. Programming overview, variables, objects
 - 3. Arithmetic expressions
 - 4. Loops, strings

Weekend: Assignment 0

- Week 2 1. If statement
 - 2. Arrays
 - 3. Class methods
 - 4. Recursion

Weekend: Assignment 1

- Week 3 1. Game playing
 - 2. Internet, IP
 - 3. TCP, HTTP, SMTP
 - 4. Big-O notation

Weekend: Assignment 2

- Week 4 1. Divide and conquer, mergesort, multiplication
 - 2. Dynamic programming, Fibonaccis, all-pairs paths, game trees
 - 3. Topics
 - 4. Conclusion, quiz

Assignments

	Written portion	Programming portion
0.	Suppose you have a deck of cards, num-	Given a Logo-like robot class, write a program that reads a
	bered 1 through 52, but one is missing.	number r from the user and draws a circle approximately
	Invent, describe, and compare two al-	of radius r .
	gorithms for determining which card is	
	missing.	
1.	Draw a recursion tree illustrating how the	I give rules governing the simulation of a forest preserve
	computer would execute a paint-bucket	containing panthers, deer, and forage. Write a program
	algorithm on an image. I give recursive	that reads a number n from the user and determines how
	pseudocode for the algorithm and a pic-	long the preserve lasts if it begins with n deer. Use
	ture of the image.	this program to determine the best number of initial deer.
		(Ambitious students include age groups in their simula-
		tion.)
2.	Draw and evaluate a game tree for a par-	Write a Go Fish client implementing a Go Fish strategy.
	ticular tic-tac-toe board; give some big-O	I provide a library class for network communication, set
	bounds for three different code segments.	up a Go Fish server, and describe the communication pro-
	Ţ.	tocol. (Ambitious students attempt to write the winning
		strategy.)