Consider the following method, which finds and
removes some duplicated nonzero number in the parameter array, returning
true if it found one.
public static boolean removeDuplicate(char[] arr) {
int i, j;
outer:
for(i = 0; i < arr.length; i++) {
for(int j = i + 1; j < arr.length; j++) {
if(arr[i] != 0 && arr[i] == arr[j]) break outer;
}
}
if(i == arr.length { // no duplicate found
return false;
} else { // we found a duplicate; shift elements down over j
for(int k = j + 1; k < arr.length; k++) {
arr[k - 1] = arr[k];
}
arr[arr.length - 1] = 0;
return true;
}
}
Let n represent the length of arr. In terms
of n, how much time does the above method take? Use Big-O
notation to express your answer, and provide the tightest bound that
you can.