Prove the following using our axiomatic scheme.
{ i * k = n AND k mod 2 = 0 }
k := k / 2;
i := i * 2;
{i * k = n }
1. i * k = n AND k mod 2 = 0 implies (i * 2) * (k / 2) = n (Math fact)
2. { i * k = n AND k mod 2 = 0 } (Conseq: 1)
{ (i * 2) * (k / 2) = n }
3. { (i * 2) * (k / 2) = n } (Assignment)
k := k / 2;
{ (i * 2) * k = n }
4. { i * k = n AND k mod 2 = 0 } (Seq: 2, 3)
k := k / 2;
{ (i * 2) * k = n }
5. { (i * 2) * k = n } (Assignment)
i := i * 2;
{i * k = n }
6. { i * k = n AND k mod 2 = 0 } (Seq: 4, 5)
k := k / 2;
i := i * 2;
{i * k = n }