Statistics:
mean 21.750 (261.000/12) stddev 7.037 median 24.000 midrange 16.000-27.500 # avg 1 11.50 / 15 2 5.92 / 10 3 4.33 / 5
Prove the following using our axiomatic scheme.
{ i * k = n AND k mod 2 = 0 }
k := k / 2;
i := i * 2;
{i * k = n }
Consider the following Ada program.
with Text_IO; use Text_IO;
procedure Test is
X : Integer;
procedure A is begin
X := 3;
end A;
procedure B is
X : Integer;
begin
X := 4;
A;
Put_Line(Integer'Image(X));
end B;
begin
X := 2;
B;
Put_Line(Integer'Image(X));
end Test;
Consider the following grammar.
S -> a S b S | x
1. i * k = n AND k mod 2 = 0 implies (i * 2) * (k / 2) = n (Math fact)
2. { i * k = n AND k mod 2 = 0 } (Conseq: 1)
{ (i * 2) * (k / 2) = n }
3. { (i * 2) * (k / 2) = n } (Assignment)
k := k / 2;
{ (i * 2) * k = n }
4. { i * k = n AND k mod 2 = 0 } (Seq: 2, 3)
k := k / 2;
{ (i * 2) * k = n }
5. { (i * 2) * k = n } (Assignment)
i := i * 2;
{i * k = n }
6. { i * k = n AND k mod 2 = 0 } (Seq: 4, 5)
k := k / 2;
i := i * 2;
{i * k = n }